Understanding Transformers

fzeng
03/01/24

Outline

- Part 1 (today)
- Neural Networks
- Language Modeling
» Sampling
« Recurrent Neural Networks
- Milestones in Language Modeling
« Part 2
» Transformers
» This has 9 sections under it dont worry

2

Neural Networks

- Forward pass:

Neural Network with 1 Hidden Layer

(aka Feedforward Neural Networks)

. Sample task: inputs X € R*, outputs f(X) € R3

. W) c R4X5, W) c RA3. weight matrices Output layer °~ e e
LTI
. b e [R5, b® e R3. bias vectors W ’& < '~
« ©: activation function / ' \‘\
Hidden layer 0 0‘ |
NS O%

2\
« Compute hidden layer with activations w) "\,’4 Z
H = ¢ (XW + b?)

()
X

N\
o
X

(=
\9
)

é‘v 9
94s
XY
0,"4‘
4

Input layer

(=,
\NY
&

- Compute output layer for predictions

0 = HW? + b
. Neural network computes: f(x) = o (XW(D + b(l)) W® 1 p@

A

Activation Functions

Sigmoid

» |dea: introduce non-linearity
between the layers to make model

more expressive

-10

« Q: What if we didn’t have activation e ST
functions? l.e W
H — XW(l) + b(l) I?(c)e.LU LeakyRIeEOFU(a=O.2)
O = HW® + p® cetu(e)- 50 | v
| 0, otherwise s. , :
. Becomes linear regression! | | R lo
-10 -5 %0 S 10 ~101

(¢) (d)

Common activation functions

Training: Loss Function

The 7 Habits of Highly Effective People, Habit 2: Begin With the End
in Mind

What do you want your model to optimize for?

Define objective/loss function L(f(x), y)

Optimization algorithms typically minimize, so formulation should
be lower loss => better model

Common choices:

- Regression: Mean square error (MSE)/L2 loss:
2
1/ (x) — ¥l

« Classification: Cross entropy loss. Binary O/1 labels version:

—(ylog f(x) + (1 — y)log(l — f(x))

Visualization

 https://playground.tensorflow.org/

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4
001 ,661 0.03 v Tanh None v 0 v Classification ~

4

DATA FEATURES + — 3 HIDDEN LAYERS OUTPUT
Which dataset Which Test loss 0.000
do you want to properties do Y — Y — h @ Training loss 0.000
use? you want to
feed in? 3 neurons 4 neurons 2 neurons
g e A
S ~
\\\\‘\ — N
v R, N
n, N
2 [T — ~ s == P N A A I
\\\ o \\\ “‘ ,/" o g ‘:
4
Ratio of training \\ ,)((‘ {
2 ~ L\ \ 3 /4
to test X ""Q¢ '\""_"—— I 'l The outputs are
data: 50% \\\\ 'I mixed with varying
—_— , \\\ /4 weights, shown
X 22 \\EB-//, by the thickness
n of the lines.
Noise: 0 <
o X. X2 This is the output
from one neuron.
Batch size: 10 Hover to see it
O larger.
sin(X,)

Colors shows
REGENERATE data, neuron and 1! ' \

sin(X,) weight values.

[Showtestdata [] Discretize output

https://playground.tensorflow.org/

Wait, this actually works?

» How can something this simple give rise to ChatGPT and other ML
systems?

. Universal approximation theorem (Hornik et al. 1989, Cybenko 1989):

A feedforward neural network with at least a single hidden layer, sufficient
hidden units, and a linear output layer with any “squashing” activation
function (i.e sigmoid activation) can approximate any function® with any
desired non-zero error

* to be precise: any Borel-measurable function

https://www.sciencedirect.com/science/article/abs/pii/0893608089900208
https://hal.science/hal-03753170/document

Language Modeling

Language Modeling

Want a generative model for text
Need to be able to sample from model efficiently

Need to be able to learn the parameters of the model efficiently

Suppose you have a string X of length L, could formulate probability as:
p(X; 1)

10

Language Modeling

Given the vocabulary V = {lights, off, the, turn}, the language model might learn:

P(“turn off the lights”)=0.03
N (S turno

P(“off turn the lights”)=0.0002

Example from Simran Arora

» Problem of modeling this directly: difficult to model joint probabilities,
may want to sample varying lengths

i

Autoregressive Language Modeling

« From the chain rule of probability:

pX;) =pX)p(Xy | Xp)-pXp, | XX, 1)

L
T I I p(XZ ‘ Xl’ X2’ B Xl_l) P([“I”, “eat”, “the”, “apple”]) =
=1

P(“apple” | [“I”’ “ea.t”’ “the”]) 3 P(“the” I [“I”’ “ea.t”]) t 3 P(“eat” | [“I”]) t 3 P(“I”])

« Problem factorizes into next-token prediction!
» Predict first token
« Predict second token given first token
 Predict third token given first two tokens

e ...and so on

12

Autoregressive Language Modeling

L
. p(Xy 1) = Hp(Xi | X1, X5, 00, X;_1)
=1

 |n practice people use log probabilities for numerical stability:
L
logp(x; ;) = Z log p(x; | X1, X, ++, X;_1)
i=1

- To train language models: set loss function to minimize cross-entropy loss
between predictions and ground-truth tokens

13

Perplexity

A good language model should assign high probabilities to likely
seguences and vice versa

How to measure performance?

Best case: evaluations for the task you care about

What if you have no evals?

Strawman approach: compute probability of sequences on test set
Problem: shorter sequences have higher probability than longer sequences

Want something independent of length!

14

Perplexity

Take average of predicting the next token:
1 &
7 Z log p(x; | X{, X5, -*+, X;_1)

i=1
We minimize in optimization:

1 &
7 Z log p(x; | xq,X5, -*+, X;_;)

i=1

For historical reasons, people take the exponential, which is called perplexity:

1 L
Perplexity(X) = exp T 2 log p(x; | X1, X5, +++, X;_1)
=1

15

Perplexity

L
1
Perplexity(Xx) = exp 7 Z logp(x; | X, Xy, =+, X;_1)
=1 Hyperparams Dev Set Accuracy
#. #H #A LM (ppl) MNLI-m MRPC SST-2

3 768 12 5.34 77.9 79.8 884

]
: — —T 6 768 3 524 80.6 82.2 90.7
PerpIeX|ty(X) P(prza 9XL) 6 768 12 4.68 81.9 84.8 91.3
12 768 12 3.99 84.4 86.7 929

" " — 12 1024 16 3.54 85.7 86.9 933
What if your model is perfect? Then p(X. | X{,X,, -*-,X,_{) = 1 i 1ot 1 393 o6 gre o3

always, so perplexity is 1

Can also be expressed as a geometric mean:

Table 6: Ablation over BERT model size. #L = the

It your model always predicts next token wrongly, then number of layers; #H = hidden size; #A = number of at-
S tention heads. “LM (ppl)” 1s the masked LM perplexity
p(X: | X{,X,, -+, X;,_;) = 0 always, and perplexity is infinity of held-out training data.

When comparing perplexity across models, ensure same test
set is used!

16

Sampling

Sampling

. | trained my language model, | can just perform
next token sampling from it now right?

« No: even though most tokens have low
probability, cumulatively sampling a low

probability token is very likely

« 29% chance of choosing token with probability <

0.01 on right

18

0.05 A

Next token likelihood
o
o
AN

L]
-
[

Prompt: | set my cat down on the...

0.03 -

0.02 A

1\

0.00 A

/|

floor bed

100

200 300 400 T 500
Vocab items sorted byAikelihood
1

Web monkey

Sampling: Temperature

Scale probabilities by
temperature

Final layer of model uses
softmax to convert predictions
to a probability distribution:

exp(z;)

Zj]\;0 eXp (Z])

o (Zi) —

Divide logits by tempe;ature:
exp(z;/T
PX, = i) = — P& D)

N
ij 0 CXP(Z]'/ T)

Next token likelihood

o
S
1

&
W

o
N

e
=

©
o
]

With temperature = 0.5

0

100

Vocab items sorted by likelihood

200

300

19

400

500

v o(v)
| 0.6 ‘ |0.310|
Softmax
1.2 normalization 0.564
-0.3 0.126
With temperature = 1.0
L 04"
% 0.3
E 0.2
£ 0.1
=
0.0 - -
0 100 200 300 400

Vocab items sorted by likelihood

500

Next token likelihood

o
A
1

o
w

—
N

©
=

O
o

With temperature = 1.5

\

0

100

Vocab items sorted by likelihood

200

300

400

500

Sampling: Temperature

exp(z;/T)

N

PX, = i) =
Zj: o €xp(z;/T)

L d . . b . With temperature = 0.5 With temperature = 1.0 With temperature = 1.5
ower temperature, distripbution _oa- oa- oa-
e e 3 S 3
Is sharper => more conservative :e:
— — =
© 0.2 0.2 0.2
outputs
£ 0.1 £ 0.1 1 £ 0.1 1
Z Z Z "
T_O' 0.0 1 0.0 - 0.0 -
« T=0: argmax — — —
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Vocab items sorted by likelihood Vocab items sorted by likelihood Vocab items sorted by likelihood

Higher temperature,
distribution is flatter => more
diverse outputs

20

Top-k Sampling

« Another strategy: set probabilities

of all other tokens except top-k to Prompt: | set my cat down on the...
O, then renormalize distribution o
§ 0.04 -
» Usually k set between 10 to 50 % 005
£ 0.02 -
5 0.01 -

2 L
0.00 A
0 100 200 300 400 500

Vocab items sorted by likelihood

21

Beam Search

» Greedy (i.e argmax or T=0) search
does not result in the overall most
likely sequence

« Current best token may not be
good in the long run

» Right: most likely sequence is “ok
ok EOS” (.4 * .7 *1=0.28), but
greedy decoding gives “yes ok
EOS” (5*.3*1=0.15)

22

p(ts] ty,t)

p(tyl 1)) ok—1.0——EOS
o

7 _,yes—1.0—EQOS
p(t,|start) % 2

4/,ok 1—EQOS
start£.5—>yes 3—0k—1.0—EOS
~ §'4
TN
EOS

Beam Search

 |nstead: perform a search,

keeping the top k most promising
“beams” with some branching
factor

. Right: k =2

log P (arrived the|x) log P (“the green witch arrived”|x)
=93 = log P (the[x) + log P(green|the,x)
' + log P(witch | the, green,x)
® +logP(arrived|the,green,witch,x)
. / +log P(END|the,green,witch,arrived,x)[----. 57
log P(arrived[x) -,69 log P(arrived witch|x) 3.2 -
-1.6 _~ =-3.9 M 2.5 ~_.END
arrived —-2.3— O -2.1 .22
o arrived r
-1.6 -1.6 / -2.3\ o
e log P(the green|x) -.36 37 ! at
=-1.6 :
start - log P(the|x) .51 ——Wwitch—— -1.6—— ®
'.92 :'.92 _ 69)green
' Tthe— 2.7
\ log P(the witch|x)
-1.2_ =-2.1 "?"2 -_51/END
* “witch -.11 arrived
53 —1.61\'3-8

log P(Y1|X) log P(Y2|Y1>X) log P(y3|y2,y1,X) log P(y4|y3,y2,y1,X) log P(Y5|Y4a}’3a}’2:}’1ax)
Y Y2 Y3 Y4 Ys

23

Recurrent Neural Networks
(RNNs)

Recurrent Neural Networks

« State-of-the-art architecture for

sequence modeling prior to Output £ & 2
Transformers
» Difference from normal neural Hsifatn
networks: input can be sequence of
arbitrary length Input

- |dea: carry a hidden state that is
updated while processing inputs to
keep track of history

Figure from Dive into Deep Learning

25

https://d2l.ai/chapter_recurrent-neural-networks/sequence.html

Recurrent Neural Networks

Time step 1 2 3 4 5

Target sequence a C h i
Tayer
layer _ :
Input sequence m a C h i

Figure from Dive into Deep Learning

26

https://d2l.ai/chapter_recurrent-neural-networks/sequence.html

Recurrent Neural Networks

« RNN update:

() () () ()

h® = tanh (Wh(t_l) + Ux(t)) G @ Q @
(1) — Yl

’) -) () ()

(e () >

(=)

. [.: loss function f" e - i i i
. y: ground-truth target tanh activation é @ ‘

Diagram from Deep Learning (Goodfellow et al.)

. Training: learn U, V, W

27

Limitations of RNNs

 |Information bottleneck in the hidden state: difficult to model long-range
dependencies for long sequences

- Vanishing gradient/exploding gradient problem: recurrent computation
means that if gradients are <1 or >1 they are repeatedly multiplied against
itself and goes to O or infinity respectively

« Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU)
tries to address previous limitations

 But still slow to train as RNN computation is inherently sequential =>
can't scale

28

Milestones in Language
Modeling

1997: LSTMs introduced

- Allowed RNNs to model long-range
structure

- Achieved by adding a memory cell that
can carry state over long sequences (if
left unchanged)

Memory cell
internal state C ;f@\ >(+ N > C
C Y |
Forget Input %
gate gate g T
F I 7 nodge gate ,
‘1 o 1 o C, | tanh Ol o
Hidden state
g NS R R R W I
N | _/
Input X,
FC layer with Elementwise tenat
o activation function operator _L, Copy | Concatenate

30

LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter Jurgen Schmidhuber
Fakultat fur Informatik IDSIA
Technische Universitat Munchen Corso Elvezia 36
80290 Miinchen, Germany 6900 Lugano, Switzerland
hochreit@informatik.tu-muenchen.de juergen@idsia.ch
http://wwwT7.informatik.tu-muenchen.de/ hochreit http: //www.idsia.ch/" juergen
Abstract

Learning to store information over extended time intervals via recurrent backpropagation
takes a very long time, mostly due to insufficient, decaying error back flow. We briefly review
Hochreiter’s 1991 analysis of this problem, then address it by introducing a novel, efficient,
gradient-based method called “Long Short-Term Memory” (LSTM). Truncating the gradient
where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000
discrete time steps by enforcing constant error low through “constant error carrousels” within
special units. Multiplicative gate units learn to open and close access to the constant error
flow. LSTM is local in space and time; its computational complexity per time step and weight
is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy
pattern representations. In comparisons with RTRL, BPTT, Recurrent Cascade-Correlation,
Elman nets, and Neural Sequence Chunking, LSTM leads to many more successful runs, and
learns much faster. LSTM also solves complex, artificial long time lag tasks that have never
been solved by previous recurrent network algorithms.

2014: Attention Mechanism

. NEURAL MACHINE TRANSLATION
. People were trylng to use RNNs for BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

encoder-decoder models (more on Damitry Bahdanau

. . . Jacobs University Bremen, Germany
this session) for machine
translation

KyungHyun Cho Yoshua Bengio*
Université de Montréal

ABSTRACT

¢ I n t ro d u C e d t h e a tt e n t I O n Neural machine translation is a recently proposed approach to machine transla-

. tion. Unlike the traditional statistical machine translation, the neural machine
m e C h a n I S m tO R N N S trans.lat.ion aims at bui.lding a single neural network that can be jointly tuned to
maximize the translation performance. The models proposed recently for neu-

ral machine translation often belong to a family of encoder—decoders and encode

a source sentence into a fixed-length vector from which a decoder generates a

translation. In this paper, we conjecture that the use of a fixed-length vector is a

bottleneck in improving the performance of this basic encoder—decoder architec-

ture, and propose to extend this by allowing a model to automatically (soft-)search

for parts of a source sentence that are relevant to predicting a target word, without

having to form these parts as a hard segment explicitly. With this new approach,

we achieve a translation performance comparable to the existing state-of-the-art

phrase-based system on the task of English-to-French translation. Furthermore,

qualitative analysis reveals that the (soft-)alignments found by the model agree
well with our intuition.

31

2017: The Transformer

Attention Is All You Need

Dropped RNN portion

Ashish Vaswani* Noam Shazeer* Niki Parmar™ Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
I n t rO d u C e d S e | f_ a tt e n t i O n m u | t i - h e a d avaswani@google.com noam@google.com nikip@google.com usz@google.com
/
. d o _ | d . Llion Jones™ Aidan N. Gomez* | Fukasz Kaiser™
Google R h University of T Google Brai
attention, and positional encoding P o ey b PO i

Illia Polosukhin* *

Seminal paper that revolutionized 11142 polosukhindgaail. con
NLP & gave rise to the era of LLMs Abstract

The dominant sequence transduction models are based on complex recurrent or

F I | f f . | convolutional neural networks that include an encoder and a decoder. The best
u O C u S O n eXt S e S S I O n o performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,

based solely on attention mechanisms, dispensing with recurrence and convolutions

entirely. Experiments on two machine translation tasks show these models to

be superior in quality while being more parallelizable and requiring significantly

less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-

to-German translation task, improving over the existing best results, including

ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,

our model establishes a new single-model state-of-the-art BLEU score of 41.8 after

training for 3.5 days on eight GPUs, a small fraction of the training costs of the

best models from the literature. We show that the Transformer generalizes well to

other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

32

Transformers

Dont Worry

» Even experts don’t fully
understand how the Transformer
works in detail due to ambiguity

 All the information might be
overwhelming initially

« Depends on a lot of small
implementational details
learnt from decades of DL
research

34

The lack of scientific precision and detail in DL
publications. Deep Learning has been tremen-
dously successful in the last 5 to 10 years with
thousands of papers published every year. Many
describe only informally how they change a pre-
vious model, Some 100+ page papers contain
only a few lines of prose informally describing
the model [RBC™21]. At best there are some
high-level diagrams. No pseudocode. No equa-
tions. No reference to a precise explanation of the
model. One may argue that most DL. models are
minor variations of a few core architectures, such
as the Transformer [VSP*17], so a reference aug-
mented by a description of the changes should
suffice. This would be true if (a) the changes were
described precisely, (b) the reference architecture
has been described precisely elsewhere, and (c) a
reference is given to this description. Some if not
all three are lacking in most DL papers. To the
best of our knowledge no-one has even provided
pseudocode for the famous Transformer and its
encoder/decoder-only variations.

Formal Algorithms for Transformers, 2022

https://arxiv.org/abs/2207.09238

Transformer Outline

« Encoder and decoders
- Embeddings

» Attention mechanism

. Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections

- Layer normalization

- Language Modeling Head

r

x

~

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Output
Probabilities

Softmax

| Linear |

r
Add & Norm

Feed
Forward

~\

Add & Norm

Positional
Encoding

Q0

Input
Embedding

.

Multi-Head
Attention

N x

Add & Norm

Masked
Multi-Head
Attention

J

J

Q

Positional

& ‘r Encoding

Output
Embedding

Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Transformer Outline

- Encoder and decoders
« Embeddings

» Attention mechanism
. Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections
- Layer normalization

- Language Modeling Head

36

Output
Probabilities

| Softmax |
| Linear |

(. N\
Add & Norm
Feed
Forward
)
N
~ (B Add & Norm
ALl Nt Multi-Head
Feed Attention
Forward N x
Y
Nix Add & Norm
_Add & Norm |
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
1 1
Q J “)
Positional »‘ Positional
. & — ‘ .
Encodine &‘ & Q. Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Transformer Outline

- Encoder and decoders
- Embeddings

e Attention mechanism
. Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections
- Layer normalization

- Language Modeling Head

37

Output
Probabilities

Softmax

f
Add & Norm
Feed
Forward
~
4 r ~\ Add & Norm
Add & Norm

l\/IuIti—HeEj
Feed Attenti

Forward

~\

N x

\

N Add & Norm

Multi-H
Attenti

Add & Norm
Masked

l\/lulti—Hecm
Attenti

Positional
Encoding

Positional

" & . Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Transformer Outline

Encoder and decoders
Embeddings

Attention mechanism

e Self-attention

Multi-head Attention
Positional encoding
Residual connections
Layer normalization

Language Modeling Head

38

Output
Probabilities

Softmax

f
Add & Norm
Feed
Forward
~
4 r ~\ Add & Norm
Add & Norm

l\/IuIti—HeEj
Feed Attenti

Forward

~\

N x

\

N Add & Norm

Multi-H
Attenti

Add & Norm

Masked
I\/lulti—Hecm
Attenti

Positional
Encoding

Positional

" & . Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
» Self-attention
 Multi-head Attention
» Positional encoding

- Residual connections
- Layer normalization

- Language Modeling Head

39

Output

Probabilities
| Softmax |
(. N\
Add & Norm
Feed
Forward
)
N
~ (B Add & Norm
ALl Nt Multi-Head |
Feed Attention
Forward | N x
Y
Nix Add & Norm
_Add & Norm | |
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
1 J 1 J
Q J “)
Positional »‘ »‘ Positional
Encoding ‘v & ‘r Encoding

Output
Embedding

Input
Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
. Self-attention

» Multi-head Attention

« Positional encoding

- Residual connections
- Layer normalization

- Language Modeling Head

40

Output
Probabilities

| Softmax |
| Linear |

Add & Norm

Feed
Forward

r

x

N

Add & Norm

Feed
Forward

N x

Add & Norm

Multi-Head
Attention

Positional
Encoding

Add & Norm

Multi-Head
Attention

N x

Add & Norm

Masked
Multi-Head
Attention

J

Positional
e -€b @ Encoding

Input
Embedding

Inputs

Output
Embedding

Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
. Self-attention

» Multi-head Attention

» Positional encoding
 Residual connections
- Layer normalization

- Language Modeling Head

41

Qutput
Probabilities

Softmax

| Linear |

-
|_Add B Norm |

Feed
Forward

N\ Add & Norm

Multi-Head
Attention

Feed
Forward

1_Add B Norm |

Masked
Multi-Head
Attention

Multi-Head
Attention

J .

Positional

Positional »‘ ‘

Encoding S QS Encoding
Input Output

Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
» Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections
 Layer normalization

- Language Modeling Head

42

Output
Probabilities

| Softmax |
| Linear |

(. N\
_Add &Norm }
Feed
Forward
r N | | CddENorm)
] Multi-Head
Feed Attention
Forward N x
Y
(Add & Norm J
N [—~(Add &lNorm) e
Multi-Head Multi-Head
Attention Attention
1 1 J
Q J “)
Positional »‘ »‘ Positional
Encoding ‘v & ‘r Encoding

Input
Embedding

Inputs

Output
Embedding

Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
. Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections
- Layer normalization

« Language Modeling Head

43

Output
Probabilities

| Softmax |
| Linear |

f
Add & Norm
Feed
Forward

Add & Norm

Multi-Head

Feed Attention
Forward

N x

Add & Norm

Masked
Multi-Head
Attention

N x

Multi-Head
Attention

Positional
Encoding

Positional

" & . Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

A kitten to spurr us on

44

Transformer Outline

« Encoder and decoders
- Embeddings

» Attention mechanism

. Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections

- Layer normalization

- Language Modeling Head

r

x

~

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Output
Probabilities

Softmax

| Linear |

r
Add & Norm

Feed
Forward

~\

Add & Norm

Positional
Encoding

Q0

Input
Embedding

.

Multi-Head
Attention

N x

Add & Norm

Masked
Multi-Head
Attention

J

J

Q

Positional

& ‘r Encoding

Output
Embedding

Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Encoder-only, Decoder-only, Encoder-Decoder Transformers

» Decoder-only:

« (Glven previous outputs, generate
next token

Unconditioned Language Model

. Good for text generation ylw,y”@_,,,m:w gocoding |, chosenvor o
« GPT-2, GPT-3, LLaMA

46

Encoder-only, Decoder-only, Encoder-Decoder Transformers

» Encoder-only:

« Produces hidden state for use in
downstream tasks

Focodec] — hidden
stafe

- Text classification, sentiment X, Xy 27 7
analysis, named entity recognition

- BERT ([CLS] token), DistilBERT,
RoBERTa

47

Encoder-only, Decoder-only, Encoder-Decoder Transformers

« Encoder-Decoder:

» Good for tasks requiring
understanding input sequences,

and then generating output Conditioned Language Model

R - *>T<—’< - deceding L s ot
- Text translation, summarization -
« BART, T5

» Original attention paper uses
encoder-decoder architecture

48

Encoders, Decoders, Encoder-Decoders

Cute (but not very accurate) analogy:
If you can understand a language, you have a trained encoder
If you can speak the language, you have a trained decoder

If you can hold a conversation in that language with another person, you
are a trained encoder-decoder model

49

Transformer Outline

- Encoder and decoders
« Embeddings

» Attention mechanism
. Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections
- Layer normalization

- Language Modeling Head

50

Output
Probabilities

| Softmax |
| Linear |

(. N\
Add & Norm
Feed
Forward
)
N
~ (B Add & Norm
ALl Nt Multi-Head
Feed Attention
Forward N x
Y
Nix Add & Norm
_Add & Norm |
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
1 1
Q J “)
Positional »‘ Positional
. & — ‘ .
Encodine &‘ & Q. Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Word Embeddings

Words As Vectors

 Turn words into semantically dhather
meaningful vectors
woman
 Benefits: = B
. . e
 Semantically similar words closer S
together, different words further ///
apart — |
Irl
. . . . /. 1/1,,/7&
+ Dimensionality reduction //}j?.nfam/
3 4 caer5]der 6 7 8 9 10

Example of human attributes in 2D embeddings. Figure from Dave Touretzky

51

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/tutorial.html

Word Embeddings

edden dimension

» In LLMs: embedding matrix is trained R
together with the rest of the model / m
| — —|— ombed?
. Input & output embeddings usually ; p o folen
share same weights A |
S\t JJ\'/\
\10C(r\°"\0(j EW\‘OQ j
P\ e K

52

Transformer Outline

- Encoder and decoders
- Embeddings

e Attention mechanism
. Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections
- Layer normalization

- Language Modeling Head

53

Output
Probabilities

Softmax

f
Add & Norm
Feed
Forward
~
4 r ~\ Add & Norm
Add & Norm

l\/IuIti—HeEj
Feed Attenti

Forward

~\

N x

\

N Add & Norm

Multi-H
Attenti

Add & Norm
Masked

l\/lulti—Hecm
Attenti

Positional
Encoding

Positional

" & . Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Attention

Not all parts of the input equally important
for task at hand

E.g. image classification: background does
not matter, helps to ignore spurious features

ldea: provide more weight for more relevant
features, fade out less relevant features

Features now context-aware

Attention scores

Image from Deep Learning with Python

54

https://www.manning.com/books/deep-learning-with-python

Attention

3 components: query, key, values

Keys Values

. . . . match: 0.5 5\(\/}3
Terminology inspired by search engines ﬁ\" "
Query Tree
Suppose you have a dataset of key-value (Q <o onhebeacr |
pairs: (image tags, images)
For a given query, how would you weigh
your values to return the values blended by ree o —

Dog

how important they are?

Need some notion of similarity between the image from Deep Learning with Python
query and each of the keys!

55

https://www.manning.com/books/deep-learning-with-python

Please Pay Attention

- We will derive the most famous equation in machine learning (Eg 1in
Attention Is All You Need):

. QK'
Attention(Q, K, V) = softmax \f \Y
d

56

https://arxiv.org/abs/1706.03762

Attention

. Concretely: suppose we have m keys and values {(K;,Vv;),...(K_,Vv)}

» Define attention on a query as:

m
Attention(q) = Z a(q, K;)v.
i=1
for some weighing function a(q, k)

- |dea: assigns different importance to each v; depending on how similar q

and Kk are!

57

Attention

_ Attention(q) =) a(q.k)v,
=1

.+ What is a good choice for a(q, K)?

. Want non-negativity: a(q, k;) > 0

m
~ Want normalization to 1: Z a(q, k) =1
i=1

58

Attention

. Suppose we have an arbitrary similarity function a(q, K;)

« We can use It to construct a:

. Non-negativity: take exponentials, exp(a(q, k;)) > 0

- Normalization to 1: divide by sum of all values,

a(q’ kl) _ eXP(a(Qa kl))

2. expla(q. k)

- Actually the above is just the softmax function:
exp(X;)
Z] €XP(X])

softmax(x;) =

59

Attention

m
_ Attention(q) =) a(q.k)v,
i=1
What is a good choice for a(q, K)? 3

. . O
Dot product: distance metric that extends to >

. . . V7 144 b
arbitrary dimensions, measures “angle” between

two vectors as notion of similarity a.b=|al||lb| cos ©

So now we have dot product q ' K;

60

Attention

Suppose q, K, are d-dimensional and drawn independently from standard normal
distribution

Dot product qui is now the sum of d products of two independent standard Gaussians

f X, Y. ~A(0,1)i.id, then E[X.Y;] =0, Var(X.Y;)) = 1

d
By linearity of expectations, £ Z XY |1 =0
i=1

d
By linearity of variance, Var Z XY |=d
i=1

High variance leads to instability especially since we have exponentials &

61

Attention

. Solution: scale by 1/\/3 to result in unit variance, since
Var(cX) = c*Var(X)

» Putting everything together, we have scaled dot-product attention:

exp(q k;/ \/;l) (‘l ki)
a(q, k) = ———— = softmax | ——
Y. exp(qTk;/v/d) Vd

- We are getting close @

62

Batching

- Jensen Huang has blessed us with GPUs
optimized for multiplying large matrices

 |nstead of processing just an individual
sample at a time, more efficient throughput-
wise to batch multiple samples together

“IT JUST WORKS”

[}

~7

A\ .
¢ ;
f e
E =~ \'_ N
NG e N
= T A
- Ny, it
N\ \ R
h N
g B
""!ﬂﬂf(nr;.,’
", N
i W
. 4 N, R
Z

63

Suppose you have n queries

and m keys and m values
stacked together as matrices

Q. K, V respectively

Each key, guery must have same
dimension for dot product: d,

Each value has dimension d|

First compute QK

Batched Attention

64

)

Batched Attention

« Next scale matrix entries, take softmax over each row in the matrix

. Multiply by V, get batched attention:

/ M \ (y\/ AV
] E— —
‘ Q K ': # /___ «h’)"\
oty | = : "V = — e
e | ol k"
: -) V
\ / —

° KT
Overall: Attention(Q, K, V) = softmax ((i/—) v
d

65

Transformer Outline

Encoder and decoders
Embeddings

Attention mechanism

e Self-attention

Multi-head Attention
Positional encoding
Residual connections
Layer normalization

Language Modeling Head

66

Output
Probabilities

Softmax

f
Add & Norm
Feed
Forward
~
4 r ~\ Add & Norm
Add & Norm

l\/IuIti—HeEj
Feed Attenti

Forward

~\

N x

\

N Add & Norm

Multi-H
Attenti

Add & Norm

Masked
I\/lulti—Hecm
Attenti

Positional
Encoding

Positional

" & . Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Self-Attention

. But how do we actually get our Q, K, V for a given input to compute
attention?

6/

Self-Attention

But how do we actually get our Q, K, V for a given input to compute
attention?

Given input vector x; (corresponding to some token)

Learnt weight matrices W<, W&, WV

Project x; by respective matrices for query, key, and value:

()

1. Generate S

key, query, value @
vectors

Be

Self-Attention

Output of self-attention

6. Sum the weighted
value vectors

. Parallelizing this

Q
w

@
Q
@)
S

computation with input 5. Weigh each value vector <0 ‘,3 %
: : N
matrix X instead, we 4. Turn into weights via softmax ® .’
recover ,é J
Q=XWZK=XWX V=XW" 8Dividescorebyd, d é di” X di” K
3
. Called self-attention, since ?2: ©ompare x3's query with :
the keys for x1, x2, and x3 <
query/key/values comes X
a
from same source VN . v
1. Generate A : : A
key, query, value ~ @ @) ~
vectors L A

69

Now that you understand how self-attention
works, one thing might bother you...

In computing QKT, we take all pairwise

query-key comparisons, including between
key values that follow the query value

“Just Pay Attention To Future Tokens” is a
cheat code

Solution: mask comparisons between

queries and future keys to — oo (so softmax
gives O)

70

Masking Out Future Tokens

. QK'
Attention(Q, K, V) = softmax V

\Vd

q1-k1 —00 | —00 | —00 | —O00

q2+k1 |q2°k2 | —o0 | —o00 | —o0

q3+°k1|g3°k2[(q3°k3| —oc0 | —o0

q4+k1 [q4-k2 |q4-k3 |qd4*kd| —oo

q5+k1 |g5°k2 |5°k3 | q5°k4 | g5k

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
» Self-attention
 Multi-head Attention
» Positional encoding

- Residual connections
- Layer normalization

- Language Modeling Head

7

Output

Probabilities
| Softmax |
(. N\
Add & Norm
Feed
Forward
)
N
~ (B Add & Norm
ALl Nt Multi-Head |
Feed Attention
Forward | N x
Y
Nix Add & Norm
_Add & Norm | |
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
1 J 1 J
Q J “)
Positional »‘ »‘ Positional
Encoding ‘v & ‘r Encoding

Output
Embedding

Input
Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

- Natural language can contain many
distinct syntactic, semantic, and
discourse relationships between

words

» Hard for a single self-attention
circuit to learn to capture all of

these

 |nstead, train multiple such circuits
that operate in parallel (called
multi-head attention)!

Multi-Head Attention

&)

[N x d]

€@«

Project from 0 |
hd, to d W= [hd,, x d]
Concatenate head1 output val | head2 output val | head3 output val | head4 output val
Outputs [Nxd,] [N xd,] [Nxd,] [Nxd,]
[N x hd,]
[WQ4, wk,wY, Head4 J
Multinead (W, WK, w¥, Head3 |
A’Ftentlon Layer [wo, wK, w, Head 2 |
with h=4 heads I
(WQPWKI,WV1 Head 1 J
Nxd C 5)

712

. If we have h heads, now we end
up with /& self-attention outputs

« But we want to preserve
dimensions

- We concatenate all outputs, and

project it back down to d
dimensions with a learnt weight

matrix WY

Multi-Head Attention

Nxd (&)

Project from 0 |
hd, tod W™ [hd,, x d]
Concatenate head1 output val | head2 output val | head3 output val | head4 output val
Outputs [N x d,] N xd,] [N x d] [N xd,]
[N x hd,]
[WQ4, wk,wY, Head4 J
A
Multinead (W, WK, w¥, Head3 |
. A
A’Ftentlon Layer [wo, wK, w, Head 2 |
with h=4 heads I
(WQPWKI,WV1 Head 1 J

IN x d] (o >

73

Multi-head Attention____

« GPT-2: https://colab.research.google.com/drive/
1s8XCCyxsKvNRWNz]WIiSNI8ZAYZ5YklLm_

- BERT (note this is bidirectional): https://

colab.research.google.com/drive/
ThXIQ77A4TYS4y3UthWE-Ci7V7/vVUoxmQ?

usp=sharing

74

https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_
https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_
https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
. Self-attention

» Multi-head Attention

« Positional encoding

- Residual connections
- Layer normalization

- Language Modeling Head

75

Output
Probabilities

| Softmax |
| Linear |

Add & Norm

Feed
Forward

r

x

N

Add & Norm

Feed
Forward

N x

Add & Norm

Multi-Head
Attention

Positional
Encoding

Add & Norm

Multi-Head
Attention

N x

Add & Norm

Masked
Multi-Head
Attention

J

Positional
e -€b @ Encoding

Input
Embedding

Inputs

Output
Embedding

Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Positional Encoding

Self-attention by itself is order-agnostic

But ordering information is important in
| anaua e' (Transformer Block)

g g . X = Composite Q

. Embeddi
Idea: for each input token, add (not concatenate!) wor s positon)) QD G G G
a vector denoting positional information to it ord i ‘ ﬁ ‘ ‘
L = m =5
: Embeddings |@ o %
Drawback to naive approach: short sequences Position
. Embeddings | |

much more common than long ones during Janet wil back the bl
training, SO Iater embeddings may be pOOr|y Naive approach of just Zzi]rl;gegg;igon itself as the position

trained and fail to generalize

76

. |In original Transformer paper, authors used sinusoidal
positional encoding

» Positional encoding for ith row and 2j or 27 + 1th column in d
dimensions:

| i
Piaj = >0 (100002/)

) B l

« Rationale

» Exists an orthogonal rotation matrix that can map between
positions by offsets

« Could allow model to learn relationships between positions

77

Positional Encoding (details unimportant)

0 l.-lllHIl!
F

Position encoding at -
position 5in 32 dims

10 -

)

N

(-)
™

Row (position
W
o

IR
o

1.0

0.5

- 0.0

- —0.5

20
Column (encoding dimension)

—1.0

Positional Encoding

- Another common approach in the past: make

positional encoding a learnable parameter e

during training i S
- Rotary Position Embeddings (ROPE) now the = ———————= v pp—

most widely-used positional encoding B = = i

technique, which rotates the input directly e — .

instead of adding a rotation offset e son oy

Figure 1: Implementation of Rotary Position Embedding(RoPE).

/8

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
. Self-attention

» Multi-head Attention

» Positional encoding
 Residual connections
- Layer normalization

- Language Modeling Head

79

Qutput
Probabilities

Softmax

| Linear |

-
|_Add B Norm |

Feed
Forward

N\ Add & Norm

Multi-Head
Attention

Feed
Forward

1_Add B Norm |

Masked
Multi-Head
Attention

Multi-Head
Attention

J .

Positional

Positional »‘ ‘

Encoding S QS Encoding
Input Output

Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

ResNet-152

X/ conv, 64
v, 64

/]

Residual Connections

l l ’-"““".-.-

3X3 CO

3x3 co¥

|t used to be very hard to train deep
architectures

Xxy

» ResNet paper (200k citations, CVPR 2016 Best 3x3 cohv, 64
Paper Award) introduced the residual 3x3 copv, 128 |y
connection that allowed 152 layer CNN to be 3x3 conv 128 4-7
trained, 8x deeper than SOTA VGG networks o

- Residual connections now standard in any deep

3x3 cohv, 912~

neural network 33 m
| 3x3 conv, 512+

fc 6

380

https://arxiv.org/abs/1512.03385

Residual Connections

. |ntuition: for sequences of NN layers, T T
|t iS hard to |earn f(.X), but mUCh eaSieI‘ Activatio: function Activation function
. J(x) = g(x) + X
to learn the residue g(x) = f(x) — x P
: : f(x) g(x)
- Each layer hence performs iterative Jipintubutubud hlubiubinr glptldnine [~
. . | Weight layer | | Weight layer '
refinement of representation from | F : | 7 :
: ' Activation function : | Activation function :
I |
previous layer : : : : : :
. : Weight | ' Weight | |
. Residual connections hence allow for ~— + L2222 1 egfyer :
this reparameterization f | J

Jx) = g(x) +x

381

Residual Connections

» Also known as skip connections

(a) without skip connections (b) with skip connections

Visualizing the Loss Landscape of Neural Nets

82

https://arxiv.org/abs/1712.09913

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
» Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections
 Layer normalization

- Language Modeling Head

33

Output
Probabilities

| Softmax |
| Linear |

(. N\
_Add &Norm }
Feed
Forward
r N | | CddENorm)
] Multi-Head
Feed Attention
Forward N x
Y
(Add & Norm J
N [—~(Add &lNorm) e
Multi-Head Multi-Head
Attention Attention
1 1 J
Q J “)
Positional »‘ »‘ Positional
Encoding ‘v & ‘r Encoding

Input
Embedding

Inputs

Output
Embedding

Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Layer Normalization

« Not to be confused with batch normalization
- Scales and shifts the input to keep values in a range

- Helps with training stability

« Suppose input x € R4 then for learnable gain y and offset f:

34

» We've now covered almost all the pieces
« Highlighted region is a Transformer block

« We repeat & stack both encoder and decoder
Transformer blocks many times to learn deeper

representations

Transformer Block

85

s

Add & Norm

Feed
Forward

A

Add & Norm

Multi-Head
Attention

At

Positional
Encoding

Input
Embedding

T

Inputs

Output
Probabilities

|

Softmax

|

Linear

Add & Norm

|

Feed
Forward

)

Add & Norm

|

Multi-Head
Attention

)

Add & Norm

Masked
Multi-Head
Attention

At

al

Output
Embedding

T

Outputs

(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.

Transformer Outline

- Encoder and decoders
- Embeddings

» Attention mechanism
. Self-attention

» Multi-head Attention

» Positional encoding

- Residual connections
- Layer normalization

« Language Modeling Head

36

Output
Probabilities

| Softmax |
| Linear |

f
Add & Norm
Feed
Forward

Add & Norm

Multi-Head

Feed Attention
Forward

N x

Add & Norm

Masked
Multi-Head
Attention

N x

Multi-Head
Attention

Positional
Encoding

Positional

" & . Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

- To convert outputs from last layer
of Transformer block to

probabilities over tokens

Unembedding layer usually
transpose of embedding matrix,
hence performs reverse mapping

« Softmax normalizes outputs to
follow a probability distribution

Language Model Head

takes hLN and outputs a

distribution over vocabulary V

Language Modeling Head

Word probabilities 1 x|V|

|]

Unembedding
layer = ET

~

Softmax over vocabulary V

Logits 1 x|V

Unembedding layer dx |V
J

Layert ,--4------L--------——--L_

Transformer ‘

J. .L __________ .L

87

You did it!

This was a long ride but | hope you enjoyed it

You now understand (a big part of) how Transformers work!

Architectures and specific techniques always evolving

Important thing is to understand the problems and the spirit of the techniques
L&YY

Further reading:

« Neural Scaling Laws, Low Rank Approximation (LoRA), Mixture of Experts (MoE),
Flash Attention, Quantization, Speculative Decoding, Mechanistic
Interpretability, State Space Models, etc...

88

References

Deep Learning, Goodfellow et al. 2016

Dive Into Deep Learning

Speech and Language Processing (3rd ed. draft)
CMU 11-667 Large L anguage Models Methods and Applications

Stanford CS324 - [arge Language Models
Deep Learning with Python, Francois Chollet

89

https://www.deeplearningbook.org/
https://d2l.ai/index.html
https://web.stanford.edu/~jurafsky/slp3/
https://cmu-llms.org/
https://stanford-cs324.github.io/winter2022/
https://www.manning.com/books/deep-learning-with-python

