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Outline

• Part 1 (today) 

• Neural Networks 

• Language Modeling 

• Sampling 

• Recurrent Neural Networks 

• Milestones in Language Modeling 

• Part 2 

• Transformers 

• This has 9 sections under it don’t worry
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Neural Networks



Neural Network with 1 Hidden Layer
(aka Feedforward Neural Networks)

• Sample task: inputs , outputs  

• : weight matrices 

• : bias vectors 

• : activation function 

• Forward pass: 

• Compute hidden layer with activations 
  

• Compute output layer for predictions  
 

• Neural network computes: 

X ∈ ℝ4 f(X) ∈ ℝ3

W(1) ∈ ℝ4×5, W(2) ∈ ℝ5×3

b(1) ∈ ℝ5, b(2) ∈ ℝ3

σ

H = σ (XW(1) + b(1))

O = HW(2) + b(2)

f(x) = σ (XW(1) + b(1)) W(2) + b(2)
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Activation Functions

• Idea: introduce non-linearity 
between the layers to make model 
more expressive 

• Q: What if we didn’t have activation 
functions? I.e 

  

• Becomes linear regression!

H = XW(1) + b(1)

O = HW(2) + b(2)
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Common activation functions



Training: Loss Function

• The 7 Habits of Highly Effective People, Habit 2: Begin With the End 
in Mind 

• What do you want your model to optimize for? 

• Define objective/loss function  

• Optimization algorithms typically minimize, so formulation should 
be lower loss => better model 

• Common choices:  

• Regression: Mean square error (MSE)/L2 loss: 
 

• Classification: Cross entropy loss. Binary 0/1 labels version: 

L( f(x), y)

∥f(x) − y∥2

−(y log f(x) + (1 − y)log(1 − f(x))
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Visualization

• https://playground.tensorflow.org/
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https://playground.tensorflow.org/


Wait, this actually works?

• How can something this simple give rise to ChatGPT and other ML 
systems? 

• Universal approximation theorem (Hornik et al. 1989, Cybenko 1989):  
 
A feedforward neural network with at least a single hidden layer, sufficient 
hidden units, and a linear output layer with any “squashing” activation 
function (i.e sigmoid activation)  can approximate any function* with any 
desired non-zero error
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* to be precise: any Borel-measurable function

https://www.sciencedirect.com/science/article/abs/pii/0893608089900208
https://hal.science/hal-03753170/document


Language Modeling



Language Modeling

• Want a generative model for text 

• Need to be able to sample from model efficiently 

• Need to be able to learn the parameters of the model efficiently  

• Suppose you have a string  of length , could formulate probability as:x L
p(x1..L)

10



Language Modeling

• Problem of modeling this directly: difficult to model joint probabilities, 
may want to sample varying lengths 
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Example from Simran Arora



Autoregressive Language Modeling

• From the chain rule of probability: 
 

 

• Problem factorizes into next-token prediction! 

• Predict first token 

• Predict second token given first token 

• Predict third token given first two tokens 

• …and so on

p(x1..L) = p(x1)p(x2 ∣ x1)⋯p(xL ∣ x1⋯xL−1)

=
L

∏
i=1

p(xi ∣ x1, x2, ⋯, xi−1)
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Autoregressive Language Modeling

•  

• In practice people use log probabilities for numerical stability: 

 

• To train language models: set loss function to minimize cross-entropy loss 
between predictions and ground-truth tokens

p(x1..L) =
L

∏
i=1

p(xi ∣ x1, x2, ⋯, xi−1)

log p(x1..L) =
L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1)
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Perplexity

• A good language model should assign high probabilities to likely 
sequences and vice versa 

• How to measure performance?  

• Best case: evaluations for the task you care about 

• What if you have no evals? 

• Strawman approach: compute probability of sequences on test set 

• Problem: shorter sequences have higher probability than longer sequences 

• Want something independent of length!
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Perplexity

• Take average of predicting the next token: 

 

• We minimize in optimization: 

 

• For historical reasons, people take the exponential, which is called perplexity: 

                

1
L

L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1)

−
1
L

L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1)

Perplexity(x) = exp (−
1
L

L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1))
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Perplexity

•  

• Can also be expressed as a geometric mean: 
 

• What if your model is perfect? Then  
always, so perplexity is 1 

• If your model always predicts next token wrongly, then 
 always, and perplexity is infinity 

• When comparing perplexity across models, ensure same test 
set is used!

Perplexity(x) = exp (−
1
L

L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1))
Perplexity(x) = p(x1, x2, ⋯, xL)− 1

L

p(xi ∣ x1, x2, ⋯, xi−1) = 1

p(xi ∣ x1, x2, ⋯, xi−1) = 0
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Sampling



Sampling

• I trained my language model, I can just perform 
next token sampling from it now right? 

• No: even though most tokens have low 
probability, cumulatively sampling a low 
probability token is very likely 

• 29% chance of choosing token with probability < 
0.01 on right
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Sampling: Temperature

• Scale probabilities by 
temperature 

• Final layer of model uses 
softmax to convert predictions 
to a probability distribution: 

•
 

• Divide logits by temperature: 

σ(zi) =
exp(zi)

∑N
j=0 exp(zj)

P(Xt = i) =
exp(zi/T)

∑N
j=0 exp(zj /T)
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Sampling: Temperature

•
 

• Lower temperature, distribution 
is sharper => more conservative 
outputs 

• T=0: argmax 

• Higher temperature, 
distribution is flatter => more 
diverse outputs

P(Xt = i) =
exp(zi/T)

∑N
j=0 exp(zj /T)
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Top-k Sampling

• Another strategy: set probabilities 
of all other tokens except top-k to 
0, then renormalize distribution 

• Usually  set between 10 to 50k
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Beam Search

• Greedy (i.e argmax or T=0) search 
does not result in the overall most 
likely sequence 

• Current best token may not be 
good in the long run 

• Right: most likely sequence is “ok 
ok EOS” (.4 * .7 * 1 = 0.28), but 
greedy decoding gives “yes ok 
EOS” (.5 * .3 * 1 = 0.15)
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Beam Search

• Instead: perform a search, 
keeping the top  most promising 
“beams” with some branching 
factor 

• Right: 

k

k = 2
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Recurrent Neural Networks 
(RNNs)



Recurrent Neural Networks

• State-of-the-art architecture for 
sequence modeling prior to 
Transformers 

• Difference from normal neural 
networks: input can be sequence of 
arbitrary length 

• Idea: carry a hidden state that is 
updated while processing inputs to 
keep track of history

25

Figure from Dive into Deep Learning

https://d2l.ai/chapter_recurrent-neural-networks/sequence.html


Recurrent Neural Networks
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Figure from Dive into Deep Learning

https://d2l.ai/chapter_recurrent-neural-networks/sequence.html


Recurrent Neural Networks

• RNN update: 
 

 

• : loss function 

• : ground-truth target 

• Training: learn 

h(t) = tanh (Wh(t−1) + Ux(t))
o(t) = Vh(t)

L

y

U, V, W

27

Diagram from Deep Learning (Goodfellow et al.)

tanh activation



Limitations of RNNs

• Information bottleneck in the hidden state: difficult to model long-range 
dependencies for long sequences 

• Vanishing gradient/exploding gradient problem: recurrent computation 
means that if gradients are <1 or >1 they are repeatedly multiplied against 
itself and goes to 0 or infinity respectively 

• Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU) 
tries to address previous limitations 

• But still slow to train as RNN computation is inherently sequential => 
can’t scale
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Milestones in Language 
Modeling



1997: LSTMs introduced

• Allowed RNNs to model long-range 
structure 

• Achieved by adding a memory cell that 
can carry state over long sequences (if 
left unchanged)
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2014: Attention Mechanism

• People were trying to use RNNs for 
encoder-decoder models (more on 
this session) for machine 
translation 

• Introduced the attention 
mechanism to RNNs
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2017: The Transformer

• Dropped RNN portion 

• Introduced self-attention, multi-head 
attention, and positional encoding 

• Seminal paper that revolutionized 
NLP & gave rise to the era of LLMs 

• Full focus of next session!
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Transformers



Don’t Worry

• Even experts don’t fully 
understand how the Transformer 
works in detail due to ambiguity 

• All the information might be 
overwhelming initially 

• Depends on a lot of small 
implementational details 
learnt from decades of DL 
research

34

Formal Algorithms for Transformers, 2022

https://arxiv.org/abs/2207.09238
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A kitten to spurr us on
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Encoder-only, Decoder-only, Encoder-Decoder Transformers

• Decoder-only: 

• Given previous outputs, generate 
next token 

• Good for text generation 

• GPT-2, GPT-3, LLaMA
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Encoder-only, Decoder-only, Encoder-Decoder Transformers

• Encoder-only: 

• Produces hidden state for use in 
downstream tasks 

• Text classification, sentiment 
analysis, named entity recognition 

• BERT ([CLS] token), DistilBERT, 
RoBERTa
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Encoder-only, Decoder-only, Encoder-Decoder Transformers

• Encoder-Decoder: 

• Good for tasks requiring 
understanding input sequences, 
and then generating output 
sequence 

• Text translation, summarization 

• BART, T5 

• Original attention paper uses 
encoder-decoder architecture 
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Encoders, Decoders, Encoder-Decoders

• Cute (but not very accurate) analogy: 

• If you can understand a language, you have a trained encoder 

• If you can speak the language, you have a trained decoder 

• If you can hold a conversation in that language with another person, you 
are a trained encoder-decoder model
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Word Embeddings

• Turn words into semantically 
meaningful vectors 

• Benefits: 

• Semantically similar words closer 
together, different words further 
apart 

• Dimensionality reduction
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Example of human attributes in 2D embeddings. Figure from Dave Touretzky

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/tutorial.html


Word Embeddings

• In LLMs: embedding matrix is trained 
together with the rest of the model 

• Input & output embeddings usually 
share same weights

52



Transformer Outline

• Encoder and decoders 

• Embeddings 

• Attention mechanism 

• Self-attention 

• Multi-head Attention 

• Positional encoding 

• Residual connections 

• Layer normalization 

• Language Modeling Head

53



Attention

• Not all parts of the input equally important 
for task at hand 

• E.g. image classification: background does 
not matter, helps to ignore spurious features 

• Idea: provide more weight for more relevant 
features, fade out less relevant features 

• Features now context-aware
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Image from Deep Learning with Python 

https://www.manning.com/books/deep-learning-with-python


Attention

• 3 components: query, key, values 

• Terminology inspired by search engines 

• Suppose you have a dataset of key-value 
pairs: (image tags, images) 

• For a given query, how would you weigh 
your values to return the values blended by 
how important they are? 

• Need some notion of similarity between the 
query and each of the keys!
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Image from Deep Learning with Python 

https://www.manning.com/books/deep-learning-with-python


Please Pay Attention

• We will derive the most famous equation in machine learning (Eq 1 in 
Attention Is All You Need):  
               

                 Attention(Q, K, V) = softmax ( QK⊤

d ) V
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https://arxiv.org/abs/1706.03762


Attention

• Concretely: suppose we have  keys and values  

• Define attention on a query as: 

                                   

for some weighing function  

• Idea: assigns different importance to each  depending on how similar  

and  are!

m {(k1, v1), …(km, vm)}

Attention(q) =
m

∑
i=1

α(q, ki)vi

α(q, ki)

vi q
ki
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Attention

•  

• What is a good choice for ?  

• Want non-negativity:  

• Want normalization to 1: 

Attention(q) =
m

∑
i=1

α(q, ki)vi

α(q, ki)

α(q, ki) > 0
m

∑
i=1

α(q, ki) = 1
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Attention
• Suppose we have an arbitrary similarity function  

• We can use it to construct : 

• Non-negativity: take exponentials,   

• Normalization to 1: divide by sum of all values, 

                                                            

• Actually the above is just the softmax function: 

                                                          

a(q, ki)

α

exp(a(q, ki)) > 0

α(q, ki) =
exp(a(q, ki))

∑j exp(a(q, kj))
.

softmax(xi) =
exp(xi)

∑j exp(xj)
.
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Attention

•  

• What is a good choice for ? 

• Dot product: distance metric that extends to 
arbitrary dimensions, measures “angle” between 
two vectors as notion of similarity 

• So now we have dot product 

Attention(q) =
m

∑
i=1

α(q, ki)vi

a(q, ki)

q⊤ki
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Attention
• Suppose  are -dimensional and drawn independently from standard normal 

distribution 

• Dot product  is now the sum of  products of two independent standard Gaussians 

• If  i.i.d, then  

•
By linearity of expectations,  

•
By linearity of variance,  

• High variance leads to instability especially since we have exponentials 😔

q, ki d

q⊤ki d

Xi, Yi ∼ 𝒩(0,1) E[XiYi] = 0, Var(XiYi) = 1

E [
d

∑
i=1

XiYi] = 0

Var (
d

∑
i=1

XiYi) = d
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Attention

• Solution: scale by  to result in unit variance, since 

 

• Putting everything together, we have scaled dot-product attention: 

                  

• We are getting close 😊

1/ d
Var(cX) = c2Var(X)

α(q, ki) =
exp(q⊤ki/ d)

∑j exp(q⊤kj/ d)
= softmax ( q⊤ki

d )
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Batching

• Jensen Huang has blessed us with GPUs 
optimized for multiplying large matrices 

• Instead of processing just an individual 
sample at a time, more efficient throughput-
wise to batch multiple samples together
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Batched Attention

• Suppose you have  queries 
and  keys and  values 
stacked together as matrices 

 respectively 

• Each key, query must have same 
dimension for dot product:  

• Each value has dimension  

• First compute 

n
m m

Q, K, V

dk

dv

QK⊤

64



Batched Attention

• Next scale matrix entries, take softmax over each row in the matrix 

• Multiply by , get batched attention: 
 
 
 
 
 
 
Overall: 

V

65

Attention(Q, K, V) = softmax ( QK⊤

d ) V
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Self-Attention

• But how do we actually get our  for a given input to compute 
attention?

Q, K, V
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Self-Attention
• But how do we actually get our  for a given input to compute 

attention? 

• Given input vector  (corresponding to some token) 

• Learnt weight matrices  

• Project  by respective matrices for query, key, and value:

Q, K, V

xi

WQ, WK, WV

xi
qi = xiWQ, ki = xiWK, vi = xiWV

68



Self-Attention

• Parallelizing this 
computation with input 
matrix  instead, we 
recover

 

• Called self-attention, since 
query/key/values comes 
from same source

X

Q = XWQ, K = XWK, V = XWV

69



Masking Out Future Tokens

• Now that you understand how self-attention 
works, one thing might bother you… 

• In computing , we take all pairwise 
query-key comparisons, including between 
key values that follow the query value 

• “Just Pay Attention To Future Tokens” is a 
cheat code 

• Solution: mask comparisons between 
queries and future keys to  (so softmax 
gives 0)

QKT

−∞
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Attention(Q, K, V ) = softmax ( QK⊤

d ) V



Transformer Outline

• Encoder and decoders 

• Embeddings 

• Attention mechanism 

• Self-attention 

• Multi-head Attention 

• Positional encoding 

• Residual connections 

• Layer normalization 

• Language Modeling Head

71



Multi-Head Attention

• Natural language can contain many 
distinct syntactic, semantic, and 
discourse relationships between 
words 

• Hard for a single self-attention 
circuit to learn to capture all of 
these 

• Instead, train multiple such circuits 
that operate in parallel (called 
multi-head attention)!
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Multi-Head Attention

• If we have  heads, now we end 
up with  self-attention outputs 

• But we want to preserve 
dimensions 

• We concatenate all outputs, and 
project it back down to  
dimensions with a learnt weight 
matrix 

h
h

d

WO
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Multi-head Attention

• GPT-2: https://colab.research.google.com/drive/
1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_ 

• BERT (note this is bidirectional): https://
colab.research.google.com/drive/
1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?
usp=sharing

74

https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_
https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_
https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
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Positional Encoding

• Self-attention by itself is order-agnostic 

• But ordering information is important in 
language! 

• Idea: for each input token, add (not concatenate!) 
a vector denoting positional information to it 

• Drawback to naive approach: short sequences 
much more common than long ones during 
training, so later embeddings may be poorly 
trained and fail to generalize

76

Naive approach of just using position itself as the position 
embedding



Positional Encoding (details unimportant)

• In original Transformer paper, authors used sinusoidal 
positional encoding 

• Positional encoding for th row and  or th column in  
dimensions: 

•
 

• Rationale 

• Exists an orthogonal rotation matrix that can map between 
positions by offsets 

• Could allow model to learn relationships between positions

i 2j 2j + 1 d

pi,2j = sin ( i
100002j/d ),

pi,2j+1 = cos ( i
100002j/d ) .

77

Position encoding at 
position 5 in 32 dims



Positional Encoding

• Another common approach in the past: make 
positional encoding a learnable parameter 
during training 

• Rotary Position Embeddings (RoPE) now the 
most widely-used positional encoding 
technique, which rotates the input directly 
instead of adding a rotation offset
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Residual Connections

• It used to be very hard to train deep 
architectures 

• ResNet paper (200k citations, CVPR 2016 Best 
Paper Award) introduced the residual 
connection that  allowed 152 layer CNN to be 
trained, 8x deeper than SOTA VGG networks 

• Residual connections now standard in any deep 
neural network
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https://arxiv.org/abs/1512.03385


Residual Connections

• Intuition: for sequences of NN layers, 
it is hard to learn , but much easier 
to learn the residue  

• Each layer hence performs iterative 
refinement of representation from 
previous layer 

• Residual connections hence allow for 
this reparameterization 

f(x)
g(x) = f(x) − x

f(x) = g(x) + x
81



Residual Connections

• Also known as skip connections

82

Visualizing the Loss Landscape of Neural Nets

https://arxiv.org/abs/1712.09913
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Layer Normalization

• Not to be confused with batch normalization 

• Scales and shifts the input to keep values in a range 

• Helps with training stability 

• Suppose input , then for learnable gain  and offset : 

•

x ∈ ℝd γ β

μ =
1
d

d

∑
i=1

xi

σ =
1
d

d

∑
i=1

(xi − μ)2

LayerNorm(x) = γ
x − μ

σ
+ β
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Transformer Block

• We’ve now covered almost all the pieces 

• Highlighted region is a Transformer block 

• We repeat & stack both encoder and decoder 
Transformer blocks many times to learn deeper 
representations
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Language Modeling Head

• To convert outputs from last layer 
of Transformer block to 
probabilities over tokens 

• Unembedding layer usually 
transpose of embedding matrix, 
hence performs reverse mapping 

• Softmax normalizes outputs to 
follow a probability distribution
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You did it!

• This was a long ride but I hope you enjoyed it 

• You now understand (a big part of) how Transformers work! 

• Architectures and specific techniques always evolving 

• Important thing is to understand the problems and the spirit of the techniques 

• 🥳🥳🎉🎉👏👏 

• Further reading: 

• Neural Scaling Laws, Low Rank Approximation (LoRA), Mixture of Experts (MoE), 
Flash Attention, Quantization, Speculative Decoding, Mechanistic 
Interpretability, State Space Models, etc…
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