
Understanding Transformers
fzeng

03/01/24

Outline

• Part 1 (today)

• Neural Networks

• Language Modeling

• Sampling

• Recurrent Neural Networks

• Milestones in Language Modeling

• Part 2

• Transformers

• This has 9 sections under it don’t worry

2

Neural Networks

Neural Network with 1 Hidden Layer
(aka Feedforward Neural Networks)

• Sample task: inputs , outputs

• : weight matrices

• : bias vectors

• : activation function

• Forward pass:

• Compute hidden layer with activations

• Compute output layer for predictions

• Neural network computes:

X ∈ ℝ4 f(X) ∈ ℝ3

W(1) ∈ ℝ4×5, W(2) ∈ ℝ5×3

b(1) ∈ ℝ5, b(2) ∈ ℝ3

σ

H = σ (XW(1) + b(1))

O = HW(2) + b(2)

f(x) = σ (XW(1) + b(1)) W(2) + b(2)

4

W(1)

W(2)

Activation Functions

• Idea: introduce non-linearity
between the layers to make model
more expressive

• Q: What if we didn’t have activation
functions? I.e

• Becomes linear regression!

H = XW(1) + b(1)

O = HW(2) + b(2)

5

Common activation functions

Training: Loss Function

• The 7 Habits of Highly Effective People, Habit 2: Begin With the End
in Mind

• What do you want your model to optimize for?

• Define objective/loss function

• Optimization algorithms typically minimize, so formulation should
be lower loss => better model

• Common choices:

• Regression: Mean square error (MSE)/L2 loss:

• Classification: Cross entropy loss. Binary 0/1 labels version:

L(f(x), y)

∥f(x) − y∥2

−(y log f(x) + (1 − y)log(1 − f(x))

6

Visualization

• https://playground.tensorflow.org/

7

https://playground.tensorflow.org/

Wait, this actually works?

• How can something this simple give rise to ChatGPT and other ML
systems?

• Universal approximation theorem (Hornik et al. 1989, Cybenko 1989):

A feedforward neural network with at least a single hidden layer, sufficient
hidden units, and a linear output layer with any “squashing” activation
function (i.e sigmoid activation) can approximate any function* with any
desired non-zero error

8

* to be precise: any Borel-measurable function

https://www.sciencedirect.com/science/article/abs/pii/0893608089900208
https://hal.science/hal-03753170/document

Language Modeling

Language Modeling

• Want a generative model for text

• Need to be able to sample from model efficiently

• Need to be able to learn the parameters of the model efficiently

• Suppose you have a string of length , could formulate probability as:x L
p(x1..L)

10

Language Modeling

• Problem of modeling this directly: difficult to model joint probabilities,
may want to sample varying lengths

11

Example from Simran Arora

Autoregressive Language Modeling

• From the chain rule of probability:

• Problem factorizes into next-token prediction!

• Predict first token

• Predict second token given first token

• Predict third token given first two tokens

• …and so on

p(x1..L) = p(x1)p(x2 ∣ x1)⋯p(xL ∣ x1⋯xL−1)

=
L

∏
i=1

p(xi ∣ x1, x2, ⋯, xi−1)

12

Autoregressive Language Modeling

•

• In practice people use log probabilities for numerical stability:

• To train language models: set loss function to minimize cross-entropy loss
between predictions and ground-truth tokens

p(x1..L) =
L

∏
i=1

p(xi ∣ x1, x2, ⋯, xi−1)

log p(x1..L) =
L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1)

13

Perplexity

• A good language model should assign high probabilities to likely
sequences and vice versa

• How to measure performance?

• Best case: evaluations for the task you care about

• What if you have no evals?

• Strawman approach: compute probability of sequences on test set

• Problem: shorter sequences have higher probability than longer sequences

• Want something independent of length!

14

Perplexity

• Take average of predicting the next token:

• We minimize in optimization:

• For historical reasons, people take the exponential, which is called perplexity:

1
L

L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1)

−
1
L

L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1)

Perplexity(x) = exp (−
1
L

L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1))
15

Perplexity

•

• Can also be expressed as a geometric mean:

• What if your model is perfect? Then
always, so perplexity is 1

• If your model always predicts next token wrongly, then
 always, and perplexity is infinity

• When comparing perplexity across models, ensure same test
set is used!

Perplexity(x) = exp (−
1
L

L

∑
i=1

log p(xi ∣ x1, x2, ⋯, xi−1))
Perplexity(x) = p(x1, x2, ⋯, xL)− 1

L

p(xi ∣ x1, x2, ⋯, xi−1) = 1

p(xi ∣ x1, x2, ⋯, xi−1) = 0

16

Sampling

Sampling

• I trained my language model, I can just perform
next token sampling from it now right?

• No: even though most tokens have low
probability, cumulatively sampling a low
probability token is very likely

• 29% chance of choosing token with probability <
0.01 on right

18

Sampling: Temperature

• Scale probabilities by
temperature

• Final layer of model uses
softmax to convert predictions
to a probability distribution:

•

• Divide logits by temperature:

σ(zi) =
exp(zi)

∑N
j=0 exp(zj)

P(Xt = i) =
exp(zi/T)

∑N
j=0 exp(zj /T)

19

Sampling: Temperature

•

• Lower temperature, distribution
is sharper => more conservative
outputs

• T=0: argmax

• Higher temperature,
distribution is flatter => more
diverse outputs

P(Xt = i) =
exp(zi/T)

∑N
j=0 exp(zj /T)

20

Top-k Sampling

• Another strategy: set probabilities
of all other tokens except top-k to
0, then renormalize distribution

• Usually set between 10 to 50k

21

Beam Search

• Greedy (i.e argmax or T=0) search
does not result in the overall most
likely sequence

• Current best token may not be
good in the long run

• Right: most likely sequence is “ok
ok EOS” (.4 * .7 * 1 = 0.28), but
greedy decoding gives “yes ok
EOS” (.5 * .3 * 1 = 0.15)

22

Beam Search

• Instead: perform a search,
keeping the top most promising
“beams” with some branching
factor

• Right:

k

k = 2

23

Recurrent Neural Networks
(RNNs)

Recurrent Neural Networks

• State-of-the-art architecture for
sequence modeling prior to
Transformers

• Difference from normal neural
networks: input can be sequence of
arbitrary length

• Idea: carry a hidden state that is
updated while processing inputs to
keep track of history

25

Figure from Dive into Deep Learning

https://d2l.ai/chapter_recurrent-neural-networks/sequence.html

Recurrent Neural Networks

26

Figure from Dive into Deep Learning

https://d2l.ai/chapter_recurrent-neural-networks/sequence.html

Recurrent Neural Networks

• RNN update:

• : loss function

• : ground-truth target

• Training: learn

h(t) = tanh (Wh(t−1) + Ux(t))
o(t) = Vh(t)

L

y

U, V, W

27

Diagram from Deep Learning (Goodfellow et al.)

tanh activation

Limitations of RNNs

• Information bottleneck in the hidden state: difficult to model long-range
dependencies for long sequences

• Vanishing gradient/exploding gradient problem: recurrent computation
means that if gradients are <1 or >1 they are repeatedly multiplied against
itself and goes to 0 or infinity respectively

• Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU)
tries to address previous limitations

• But still slow to train as RNN computation is inherently sequential =>
can’t scale

28

Milestones in Language
Modeling

1997: LSTMs introduced

• Allowed RNNs to model long-range
structure

• Achieved by adding a memory cell that
can carry state over long sequences (if
left unchanged)

30

2014: Attention Mechanism

• People were trying to use RNNs for
encoder-decoder models (more on
this session) for machine
translation

• Introduced the attention
mechanism to RNNs

31

2017: The Transformer

• Dropped RNN portion

• Introduced self-attention, multi-head
attention, and positional encoding

• Seminal paper that revolutionized
NLP & gave rise to the era of LLMs

• Full focus of next session!

32

Transformers

Don’t Worry

• Even experts don’t fully
understand how the Transformer
works in detail due to ambiguity

• All the information might be
overwhelming initially

• Depends on a lot of small
implementational details
learnt from decades of DL
research

34

Formal Algorithms for Transformers, 2022

https://arxiv.org/abs/2207.09238

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

35

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

36

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

37

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

38

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

39

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

40

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

41

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

42

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

43

A kitten to spurr us on

44

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

45

Encoder-only, Decoder-only, Encoder-Decoder Transformers

• Decoder-only:

• Given previous outputs, generate
next token

• Good for text generation

• GPT-2, GPT-3, LLaMA

46

Encoder-only, Decoder-only, Encoder-Decoder Transformers

• Encoder-only:

• Produces hidden state for use in
downstream tasks

• Text classification, sentiment
analysis, named entity recognition

• BERT ([CLS] token), DistilBERT,
RoBERTa

47

Encoder-only, Decoder-only, Encoder-Decoder Transformers

• Encoder-Decoder:

• Good for tasks requiring
understanding input sequences,
and then generating output
sequence

• Text translation, summarization

• BART, T5

• Original attention paper uses
encoder-decoder architecture

48

Encoders, Decoders, Encoder-Decoders

• Cute (but not very accurate) analogy:

• If you can understand a language, you have a trained encoder

• If you can speak the language, you have a trained decoder

• If you can hold a conversation in that language with another person, you
are a trained encoder-decoder model

49

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

50

Word Embeddings

• Turn words into semantically
meaningful vectors

• Benefits:

• Semantically similar words closer
together, different words further
apart

• Dimensionality reduction

51

Example of human attributes in 2D embeddings. Figure from Dave Touretzky

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/tutorial.html

Word Embeddings

• In LLMs: embedding matrix is trained
together with the rest of the model

• Input & output embeddings usually
share same weights

52

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

53

Attention

• Not all parts of the input equally important
for task at hand

• E.g. image classification: background does
not matter, helps to ignore spurious features

• Idea: provide more weight for more relevant
features, fade out less relevant features

• Features now context-aware

54

Image from Deep Learning with Python

https://www.manning.com/books/deep-learning-with-python

Attention

• 3 components: query, key, values

• Terminology inspired by search engines

• Suppose you have a dataset of key-value
pairs: (image tags, images)

• For a given query, how would you weigh
your values to return the values blended by
how important they are?

• Need some notion of similarity between the
query and each of the keys!

55

Image from Deep Learning with Python

https://www.manning.com/books/deep-learning-with-python

Please Pay Attention

• We will derive the most famous equation in machine learning (Eq 1 in
Attention Is All You Need):

 Attention(Q, K, V) = softmax (QK⊤

d) V

56

https://arxiv.org/abs/1706.03762

Attention

• Concretely: suppose we have keys and values

• Define attention on a query as:

for some weighing function

• Idea: assigns different importance to each depending on how similar

and are!

m {(k1, v1), …(km, vm)}

Attention(q) =
m

∑
i=1

α(q, ki)vi

α(q, ki)

vi q
ki

57

Attention

•

• What is a good choice for ?

• Want non-negativity:

• Want normalization to 1:

Attention(q) =
m

∑
i=1

α(q, ki)vi

α(q, ki)

α(q, ki) > 0
m

∑
i=1

α(q, ki) = 1

58

Attention
• Suppose we have an arbitrary similarity function

• We can use it to construct :

• Non-negativity: take exponentials,

• Normalization to 1: divide by sum of all values,

• Actually the above is just the softmax function:

a(q, ki)

α

exp(a(q, ki)) > 0

α(q, ki) =
exp(a(q, ki))

∑j exp(a(q, kj))
.

softmax(xi) =
exp(xi)

∑j exp(xj)
.

59

Attention

•

• What is a good choice for ?

• Dot product: distance metric that extends to
arbitrary dimensions, measures “angle” between
two vectors as notion of similarity

• So now we have dot product

Attention(q) =
m

∑
i=1

α(q, ki)vi

a(q, ki)

q⊤ki

60

Attention
• Suppose are -dimensional and drawn independently from standard normal

distribution

• Dot product is now the sum of products of two independent standard Gaussians

• If i.i.d, then

•
By linearity of expectations,

•
By linearity of variance,

• High variance leads to instability especially since we have exponentials 😔

q, ki d

q⊤ki d

Xi, Yi ∼ 𝒩(0,1) E[XiYi] = 0, Var(XiYi) = 1

E [
d

∑
i=1

XiYi] = 0

Var (
d

∑
i=1

XiYi) = d

61

Attention

• Solution: scale by to result in unit variance, since

• Putting everything together, we have scaled dot-product attention:

• We are getting close 😊

1/ d
Var(cX) = c2Var(X)

α(q, ki) =
exp(q⊤ki/ d)

∑j exp(q⊤kj/ d)
= softmax (q⊤ki

d)

62

Batching

• Jensen Huang has blessed us with GPUs
optimized for multiplying large matrices

• Instead of processing just an individual
sample at a time, more efficient throughput-
wise to batch multiple samples together

63

Batched Attention

• Suppose you have queries
and keys and values
stacked together as matrices

 respectively

• Each key, query must have same
dimension for dot product:

• Each value has dimension

• First compute

n
m m

Q, K, V

dk

dv

QK⊤

64

Batched Attention

• Next scale matrix entries, take softmax over each row in the matrix

• Multiply by , get batched attention:

Overall:

V

65

Attention(Q, K, V) = softmax (QK⊤

d) V

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

66

Self-Attention

• But how do we actually get our for a given input to compute
attention?

Q, K, V

67

Self-Attention
• But how do we actually get our for a given input to compute

attention?

• Given input vector (corresponding to some token)

• Learnt weight matrices

• Project by respective matrices for query, key, and value:

Q, K, V

xi

WQ, WK, WV

xi
qi = xiWQ, ki = xiWK, vi = xiWV

68

Self-Attention

• Parallelizing this
computation with input
matrix instead, we
recover

• Called self-attention, since
query/key/values comes
from same source

X

Q = XWQ, K = XWK, V = XWV

69

Masking Out Future Tokens

• Now that you understand how self-attention
works, one thing might bother you…

• In computing , we take all pairwise
query-key comparisons, including between
key values that follow the query value

• “Just Pay Attention To Future Tokens” is a
cheat code

• Solution: mask comparisons between
queries and future keys to (so softmax
gives 0)

QKT

−∞

70

Attention(Q, K, V) = softmax (QK⊤

d) V

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

71

Multi-Head Attention

• Natural language can contain many
distinct syntactic, semantic, and
discourse relationships between
words

• Hard for a single self-attention
circuit to learn to capture all of
these

• Instead, train multiple such circuits
that operate in parallel (called
multi-head attention)!

72

Multi-Head Attention

• If we have heads, now we end
up with self-attention outputs

• But we want to preserve
dimensions

• We concatenate all outputs, and
project it back down to
dimensions with a learnt weight
matrix

h
h

d

WO

73

Multi-head Attention

• GPT-2: https://colab.research.google.com/drive/
1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_

• BERT (note this is bidirectional): https://
colab.research.google.com/drive/
1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?
usp=sharing

74

https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_
https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_
https://colab.research.google.com/drive/1s8XCCyxsKvNRWNzjWi5Nl8ZAYZ5YkLm_
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing
https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

75

Positional Encoding

• Self-attention by itself is order-agnostic

• But ordering information is important in
language!

• Idea: for each input token, add (not concatenate!)
a vector denoting positional information to it

• Drawback to naive approach: short sequences
much more common than long ones during
training, so later embeddings may be poorly
trained and fail to generalize

76

Naive approach of just using position itself as the position
embedding

Positional Encoding (details unimportant)

• In original Transformer paper, authors used sinusoidal
positional encoding

• Positional encoding for th row and or th column in
dimensions:

•

• Rationale

• Exists an orthogonal rotation matrix that can map between
positions by offsets

• Could allow model to learn relationships between positions

i 2j 2j + 1 d

pi,2j = sin (i
100002j/d),

pi,2j+1 = cos (i
100002j/d) .

77

Position encoding at
position 5 in 32 dims

Positional Encoding

• Another common approach in the past: make
positional encoding a learnable parameter
during training

• Rotary Position Embeddings (RoPE) now the
most widely-used positional encoding
technique, which rotates the input directly
instead of adding a rotation offset

78

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

79

Residual Connections

• It used to be very hard to train deep
architectures

• ResNet paper (200k citations, CVPR 2016 Best
Paper Award) introduced the residual
connection that allowed 152 layer CNN to be
trained, 8x deeper than SOTA VGG networks

• Residual connections now standard in any deep
neural network

80

https://arxiv.org/abs/1512.03385

Residual Connections

• Intuition: for sequences of NN layers,
it is hard to learn , but much easier
to learn the residue

• Each layer hence performs iterative
refinement of representation from
previous layer

• Residual connections hence allow for
this reparameterization

f(x)
g(x) = f(x) − x

f(x) = g(x) + x
81

Residual Connections

• Also known as skip connections

82

Visualizing the Loss Landscape of Neural Nets

https://arxiv.org/abs/1712.09913

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

83

Layer Normalization

• Not to be confused with batch normalization

• Scales and shifts the input to keep values in a range

• Helps with training stability

• Suppose input , then for learnable gain and offset :

•

x ∈ ℝd γ β

μ =
1
d

d

∑
i=1

xi

σ =
1
d

d

∑
i=1

(xi − μ)2

LayerNorm(x) = γ
x − μ

σ
+ β

84

Transformer Block

• We’ve now covered almost all the pieces

• Highlighted region is a Transformer block

• We repeat & stack both encoder and decoder
Transformer blocks many times to learn deeper
representations

85

Transformer Outline

• Encoder and decoders

• Embeddings

• Attention mechanism

• Self-attention

• Multi-head Attention

• Positional encoding

• Residual connections

• Layer normalization

• Language Modeling Head

86

Language Modeling Head

• To convert outputs from last layer
of Transformer block to
probabilities over tokens

• Unembedding layer usually
transpose of embedding matrix,
hence performs reverse mapping

• Softmax normalizes outputs to
follow a probability distribution

87

You did it!

• This was a long ride but I hope you enjoyed it

• You now understand (a big part of) how Transformers work!

• Architectures and specific techniques always evolving

• Important thing is to understand the problems and the spirit of the techniques

• 🥳🥳🎉🎉👏👏

• Further reading:

• Neural Scaling Laws, Low Rank Approximation (LoRA), Mixture of Experts (MoE),
Flash Attention, Quantization, Speculative Decoding, Mechanistic
Interpretability, State Space Models, etc…

88

References

• Deep Learning, Goodfellow et al. 2016

• Dive into Deep Learning

• Speech and Language Processing (3rd ed. draft)

• CMU 11-667 Large Language Models Methods and Applications

• Stanford CS324 - Large Language Models

• Deep Learning with Python, François Chollet

89

https://www.deeplearningbook.org/
https://d2l.ai/index.html
https://web.stanford.edu/~jurafsky/slp3/
https://cmu-llms.org/
https://stanford-cs324.github.io/winter2022/
https://www.manning.com/books/deep-learning-with-python

