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Challenges with LLM Evals

• LLM highly sensitive to prompts (Liang et al., 2022; Mizrahi et al., 2023; Scalar et 
al., 2023; Weber et al., 2023, Bsharat et al., 2023)


• Several widely used open-source LLMs extremely sensitive to subtle changes in 
prompt formatting in few-shot settings, with performance differences of up to 76 
accuracy points (Scalar et al., 2023)


• Changing the options from (A) to (1) or changing the parentheses from (A) to [A], 
or adding an extra space between the option and the answer can lead to a ~5 
percentage point change in accuracy on the evaluation (Anthropic) 


• Tipping a language model 300K for a better solution" leads to increased 
capabilities (Bsharat et al., 2023)

We need a Science of Evals — Apollo Research

https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2401.00595
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2312.04945
https://arxiv.org/abs/2312.16171v2
https://arxiv.org/abs/2310.11324
https://www.anthropic.com/news/evaluating-ai-systems
https://arxiv.org/abs/2312.16171v2
https://www.apolloresearch.ai/blog/we-need-a-science-of-evals


Papers often don’t report standard errors



Science of Evals still young



Paper recommendations

1. Computing standard errors of the mean using the Central Limit Theorem


2. When questions are drawn in related groups, computing clustered standard errors


3. Reducing variance by resampling answers and by analyzing next-token 
probabilities


4. When two models are being compared, conducting statistical inference on the 
question level paired differences, rather than the population-level summary 
statistics


5. Using power analysis to determine whether an eval (or a random subsample) is 
capable of testing a hypothesis of interest



Standard Errors of the Mean



Standard Error of the Mean

• Some notation:


• For some question  in the dataset,



• Can also talk about any question in the dataset unconditionally: 


• Mean of scores: 

i
si
⏟

score of question i

= xi
⏟

conditional mean on question i

+ ϵi
⏟

conditional variance on question i

s = x + ϵ

s =
1
n ∑

i

si



Standard Error of the Mean

• Our scores can come from any 
distribution; how can we say 
anything about error bounds if we 
don’t know this distribution?  


• CLT to the rescue!


• CLT says mean of i.i.d random 
variables with finite mean and 
variance converges can be 
approximated with standard normal



Standard Error of the Mean

• So the estimate of our mean can be transformed into a standard normal


• We can then also get unbiased estimator of sample variance:




• For n samples, by linearity of variance we recover

Var(s) =
1

n − 1 ∑
i

(si − s̄)2



Standard Error of the Mean

• Using maximum likelihood 
estimator (MLE), we declare  to 
be the estimate of population 
mean, and draw a 95% 
confidence interval around it 
(1.96 sigma)


• Recovers Eq (3):

s



Clustered Standard Errors



Clustered Standard Error

• CLT requires i.i.d assumption


• Some datasets are clearly not i.i.d


• MGSM (Multilingual Grade-School Math):


• 2500 grade-school math questions


• But really: 250 questions translated into 10 different languages


• 250 clusters of 10



Clustered Standard Error

• Why does it fail if observations not i.i.d?


• “Effective” number of observations much fewer than 2500, probably more 
like 250


• Case 1: observation in each cluster is iid (implies 0 covariance)


• Then 

SEclustered  = SE2
C.L.T.  +

1
n2 ∑

c
∑

i
∑
j≠i

(si,c − s̄) (sj,c − s̄)
=0



Clustered Standard Error

• Case 2: observation in each cluster perfectly correlated


• Then 

 

and you add back variance contributions within each cluster

SEclustered  = SE2
C.L.T.  +

1
n2 ∑

c
∑

i
∑
j≠i

(si,c − s̄)2



Recommendation for reporting errors



Variance Reduction



Variance Reduction

•



• Increase number of samples directly reduces variance


• But we still have another trick..

Var( ̂μ) = Var ( 1
n ∑

i

si) = Var(s)/n



Law of Total Variance

• This is tricky to get intuition on


• 


• Example: Y is dog’s weight, X is 
breed


• First term: avg of variance of weight 
within each breed (within-group 
variance)


• Second term: variance of avg of 
each breed (between-group 
variance)

Var(Y) = E[Var(Y ∣ X)] + Var(E[Y ∣ X])



Variance Reduction

• FYI: I don’t like their notation for this part, very imprecise


•



• Let’s consider resampling


• Resampling won’t help the first term - this is inherent in the distribution of questions


• But it can help to decrease the second term: sampling n times & taking mean will 
reduce it by n


• Increasing n is economical until the point that second term is same size as first term 
(then first term dominates)

Var(s) = Var (𝔼[xi ∣ i])
variance in scores across different questions

+ 𝔼 [Var(xi ∣ i)]
variance in scores from answering the same question across different attempts



Variance Reduction

•



• Tempting thing to eliminate second term: set temp=0


• 


• Their example: setting T=0 increases first term

Var(s) = Var (𝔼[xi ∣ i])
variance in scores across different questions

+ 𝔼 [Var(xi ∣ i)]
variance in scores from answering the same question across different attempts



Variance Reduction

• 


• For problems where you can use model logprobs to get probability of 
correct answer (i.e true/false qn), here’s another trick:


• Instead of sampling the answer token & giving a binary score, return the 
probability of correct answer as score


• Then second term becomes 0 😊

Var(s) = Var (𝔼[xi ∣ i])
variance in scores across different questions

+ 𝔼 [Var(xi ∣ i)]
variance in scores from answering the same question across different attempts



Paired Analysis



Comparing Models

• Suppose you are deciding whether model B is better than model A


• You can come up with a new metric that is the difference of their means: 



• If this difference is positive and large, we should use model B!


• Assuming independence, standard error is 

̂μA−B = ̂μA − ̂μB

SEA−B = SE2
A + SE2

B



Comparing Models

• But this is an instance where non-independence can actually help us: since we 
evaluate both models on the same test cases in the eval, it is likely both models 
may find the same groups of test cases similarly easy or challenging


• What they call “paired” is really just whether we are assuming independence or not


• , and  if they are 
independent


• Similarly you can expand & work out that 



• Get variance reduction if there is correlation between the scores of the two models!

Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y) Cov(X, Y) = 0

Var(X − Y) = Var(X) + Var(Y) − 2 Cov(X, Y)



Paired Analysis
Example

• 


• 


• If  and , then unpaired 
analysis has 1/6n variance whereas paired analysis gives 1/12 variance - a 
50% reduction!

Var ( ̂μA−B, unpaired ) = (Var (sA) + Var (sB))/n

Var ( ̂μA−B, paired ) = (Var (sA) + Var (sB) − 2 Cov (sA, sB))/n

Var(sA) = Var(sB) = 1/12 Cov(sA, sB) = 1/24



Paired Analysis

• Recommendation: 


• Pairwise difference & standard error


• Score correlations



• Model beats baseline on 
MATH (95% confidence 
interval of difference all in 
positive region)


• The other two…nope



Power Analysis



Crash Course in Statistical Testing

• Suppose Jones claims he will get more than 50% of the votes in the city election (null 
hypothesis)


• We don’t believe this, and want to show the hypothesis that Jones has <50% of the votes 
(alternative hypothesis)


• To do so, we try to show the null hypothesis is unlikely based on data. 


• If we can do this, we can reject the null hypothesis and conclude the alternative is 
probably true


• If we can’t, we do not accept the alternative - we reserve judgement and state that there is 
insufficient evidence to conclude that the alternative is probably true.


• Note that you never try to prove something in statistics, you can only reject hypothesis based 
on data



Crash Course in Statistical Testing

• Elements of a statistical test


• Null hypothesis : 


• Alternative hypothesis  or : 


• Test statistic: , the number of people who voted for Jones from a 
sample of 15 people


• Rejection region:  for some threshold 

H0 p = 0.5

Ha H1 p < 0.5

Y

{Y ≤ k} k



Quick aside: Types of errors
• Type I error ( ): false positive. Also called the significance level of the test


•  Diagnosing a healthy person as diseased


• Convicting an innocent person


• Type II error ( ): false negative


• Failing to diagnose a diseased person as sick


• Acquiring a guilty person

α

β



Crash Course in Statistical Testing

• Type I error ( ): rejecting  when it is actually true


• Type II error ( ): accepting  when  is true


• Interesting question: how to choose  for 15 voters?


• Choose small  (only claim he will lose if he gets 2 votes or less)


• Low chance of committing Type I error (it’s likely he will lose when we think so)


• High chance of committing Type II error (he will also frequently lose when we don’t think so)


• Choose large  (claim he will lose even if he has up to 5 votes)


• High chance of committing Type I error (he will win many times we think he will lose)


• Low chance of committing Type II error (if we think he will win, he’ll likely win)


•  and  are inversely related!

α H0

β H0 Ha

k

k = 2

k = 5

α β



Choosing k

• How to choose rejection region  in 
practice:


• Choose a  (i.e 0.05)


• Compute the  that gives desired rejection 
region with area 


• Can also do a similar thing if you want to 
control for  instead (though much harder)


• But we usually care more about Type I 
errors, i.e wrongly claiming something 
works when it actually does not in 
science 

k

α

k
α

β



Choosing k

• Of course, you could have a 
weird experiments where test 
statistic is in rejection region at  
= 0.05 but not so at  = 0.0499, 
which makes this choice 
somewhat arbitrary


• So people also report p-value: the 
smallest  such that the test 
statistic is still in the rejection 
region

α
α

α



Power Analysis

• Goodness of a test is measured by  and 


• Power of a test is the probability it will lead to rejection of 


• 


• Typical power curve:


• Low probability of rejection  
when true parameter close to ,  
and vice versa

α β

H0

power(θ) = P(W in rejection region when parameter value is θ)

θ0



Power Analysis

• In an ideal world


• Never reject  if true parameter is 


• Always reject otherwise

H0 θ0



Power Analysis
• So tests with higher power would be able to detect small changes


• Conversely, if your test has low power at , then it’s pointless to spend 
money running evals like “is model B actually 1% better than model A” 
because it will rarely reject the null hypothesis when it should


• Observe that 


• One can ask: what is the minimum detectable effect (MDE)  for a desired 
power level?

HA

β(θA) = 1 − power(θA)

δ



Power Analysis
• In essence, Section 5 shows that increasing size of dataset will decrease 

variance which increases power of test


• So for a given minimum detectable effect, significance level , and 
desired power level, you can compute the minimum dataset size needed 
to make this happen

α



Further Reading

• Mathematical Statistics with Applications (Wackerly, 7 ed.)


• Ch 8 Estimation, Ch 10 Hypothesis Testing, Ch 13 The Analysis of 
Variance


• All of Statistics: A Concise Course in Statistical Inference (Wasserman)


• Ch 6 Models, Statistical Inference and Learning, Ch 8 The Bootstrap, Ch 
10 Hypothesis Testing and p-values

https://www.stat.cmu.edu/~larry/all-of-statistics/

