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Challenges with LLM Evals

• LLM highly sensitive to prompts (Liang et al., 2022; Mizrahi et al., 2023; Scalar et 
al., 2023; Weber et al., 2023, Bsharat et al., 2023) 

• Several widely used open-source LLMs extremely sensitive to subtle changes in 
prompt formatting in few-shot settings, with performance differences of up to 76 
accuracy points (Scalar et al., 2023) 

• Changing the options from (A) to (1) or changing the parentheses from (A) to [A], 
or adding an extra space between the option and the answer can lead to a ~5 
percentage point change in accuracy on the evaluation (Anthropic)  

• Tipping a language model 300K for a better solution" leads to increased 
capabilities (Bsharat et al., 2023)

We need a Science of Evals — Apollo Research

https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2401.00595
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2310.11324
https://arxiv.org/abs/2312.04945
https://arxiv.org/abs/2312.16171v2
https://arxiv.org/abs/2310.11324
https://www.anthropic.com/news/evaluating-ai-systems
https://arxiv.org/abs/2312.16171v2
https://www.apolloresearch.ai/blog/we-need-a-science-of-evals


Papers often don’t report standard errors



Science of Evals still young



Paper recommendations

1. Computing standard errors of the mean using the Central Limit Theorem 

2. When questions are drawn in related groups, computing clustered standard errors 

3. Reducing variance by resampling answers and by analyzing next-token 
probabilities 

4. When two models are being compared, conducting statistical inference on the 
question level paired differences, rather than the population-level summary 
statistics 

5. Using power analysis to determine whether an eval (or a random subsample) is 
capable of testing a hypothesis of interest



Standard Errors of the Mean



Standard Error of the Mean

• Some notation: 

• For some question  in the dataset,
 

• Can also talk about any question in the dataset unconditionally:  

• Mean of scores: 

i
si
⏟

score of question i

= xi
⏟

conditional mean on question i

+ ϵi
⏟

conditional variance on question i

s = x + ϵ

s =
1
n ∑

i

si



Standard Error of the Mean

• Our scores can come from any 
distribution; how can we say 
anything about error bounds if we 
don’t know this distribution?   

• CLT to the rescue! 

• CLT says mean of i.i.d random 
variables with finite mean and 
variance converges can be 
approximated with standard normal



Standard Error of the Mean

• So the estimate of our mean can be transformed into a standard normal 

• We can then also get unbiased estimator of sample variance:

 

• For n samples, by linearity of variance we recover

Var(s) =
1

n − 1 ∑
i

(si − s̄)2



Standard Error of the Mean

• Using maximum likelihood 
estimator (MLE), we declare  to 
be the estimate of population 
mean, and draw a 95% 
confidence interval around it 
(1.96 sigma) 

• Recovers Eq (3):

s



Clustered Standard Errors



Clustered Standard Error

• CLT requires i.i.d assumption 

• Some datasets are clearly not i.i.d 

• MGSM (Multilingual Grade-School Math): 

• 2500 grade-school math questions 

• But really: 250 questions translated into 10 different languages 

• 250 clusters of 10



Clustered Standard Error

• Why does it fail if observations not i.i.d? 

• “Effective” number of observations much fewer than 2500, probably more 
like 250 

• Case 1: observation in each cluster is iid (implies 0 covariance) 

• Then 

SEclustered  = SE2
C.L.T.  +

1
n2 ∑

c
∑

i
∑
j≠i

(si,c − s̄) (sj,c − s̄)
=0



Clustered Standard Error

• Case 2: observation in each cluster perfectly correlated 

• Then 

 

and you add back variance contributions within each cluster

SEclustered  = SE2
C.L.T.  +

1
n2 ∑

c
∑

i
∑
j≠i

(si,c − s̄)2



Recommendation for reporting errors



Variance Reduction



Variance Reduction

•
 

• Increase number of samples directly reduces variance 

• But we still have another trick..

Var( ̂μ) = Var ( 1
n ∑

i

si) = Var(s)/n



Law of Total Variance

• This is tricky to get intuition on 

•  

• Example: Y is dog’s weight, X is 
breed 

• First term: avg of variance of weight 
within each breed (within-group 
variance) 

• Second term: variance of avg of 
each breed (between-group 
variance)

Var(Y) = E[Var(Y ∣ X)] + Var(E[Y ∣ X])



Variance Reduction

• FYI: I don’t like their notation for this part, very imprecise 

•
 

• Let’s consider resampling 

• Resampling won’t help the first term - this is inherent in the distribution of questions 

• But it can help to decrease the second term: sampling n times & taking mean will 
reduce it by n 

• Increasing n is economical until the point that second term is same size as first term 
(then first term dominates)

Var(s) = Var (𝔼[xi ∣ i])
variance in scores across different questions

+ 𝔼 [Var(xi ∣ i)]
variance in scores from answering the same question across different attempts



Variance Reduction

•
 

• Tempting thing to eliminate second term: set temp=0 

•  

• Their example: setting T=0 increases first term

Var(s) = Var (𝔼[xi ∣ i])
variance in scores across different questions

+ 𝔼 [Var(xi ∣ i)]
variance in scores from answering the same question across different attempts



Variance Reduction

•  

• For problems where you can use model logprobs to get probability of 
correct answer (i.e true/false qn), here’s another trick: 

• Instead of sampling the answer token & giving a binary score, return the 
probability of correct answer as score 

• Then second term becomes 0 😊

Var(s) = Var (𝔼[xi ∣ i])
variance in scores across different questions

+ 𝔼 [Var(xi ∣ i)]
variance in scores from answering the same question across different attempts



To be continued next session…


