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Challenges with LLM Evals

LLM highly sensitive to prompts (Liang et al., 2022; Mizrahi et al., 2023; Scalar et
al., 2023: Weber et al., 2023, Bsharat et al., 2023)

Several widely used open-source LLMs extremely sensitive to subtle changes in

prompt formatting in few-shot settings, with performance differences of up to 76
accuracy points (Scalar et al., 2023)

Changing the options from (A) to (1) or changing the parentheses from (A) to [A],
or adding an extra space between the option and the answer can lead to a ~5

percentage point change in accuracy on the evaluation (Anthropic)

Tipping a language model 300K for a better solution" leads to increased
capabilities (Bsharat et al., 2023)

We need a Science of Evals — Apollo Research
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Papers often don’t report standard errors

MBPP
Model HumanEval HumanEval+ MBPP EvalPlus (base)
Llama 3 8B 72.6 +6.8 67.1+7.2 60.8 +4.3 72.8 +45
Gemma 2 9B 54.3 +7.6 48.8 +7.7 59.2 +4.3 T1.7 +45
Mistral 7B 40.2 +7.5 32.3 +7.2 42.6 +4.3 49.5 +5.0
Llama 3 70B 80.5 +6.1 74.4 +6.7 75.4 138 86.0 +35
Mixtral 8x22B 75.6 +6.6 68.3 £7.1 66.2 +4.1 78.6 +4.1
GPT-3.5 Turbo 68.0 +£7.1 62.8 +7.4 71.2 +4.0 82.0 +3.9
Llama 3 405B 89.0 +4.8 82.3 +5.8 78.8 +3.6 88.6 +3.2
GPT-4 86.6 +5.2 774 +6.4 80.2 +3.5 83.6 +3.7
GPT-40 90.2 +4.5 86.0 +5.3 81.4 +34 87.8 +£3.3
Claude 3.5 Sonnet 92.0 +4.2 82.3 +5.8 76.6 +3.7 90.5 +3.0
Nemotron 4 340B 73.2 +6.8 64.0 +7.3 75.4 +3.8 72.8 +4.5
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Category Benchmark - O 2 - 2 O - Z O O o
MMLU (5-shot) 69.4 72.3 61.1 | 836 769 70.7 | 87.3 82.6 85.1 89.1 89.9
General MMULU (0-shot, cor) 73.0 72.3% 60.5 | 86.0 79.9 69.8 | 88.6 7877 854 88.7 88.3
MMULU-Pro (s-shot, cor) 48.3 - 36.9 | 66.4 56.3 49.2 | 73.3 62.7 64.8 74.0 77.0
IFEval 80.4 73.6 57.6 | 87.5 T72.7 69.9 | 88.6 85.1 84.3 85.6 88.0
Code HumanEval (o-shot) 72.6 54.3 40.2 | 80.5 75.6 68.0 | 89.0 73.2 86.6 90.2 92.0
MBPP EvalPlus (o-shot) 72.8 71.7 49.5 | 86.0 78.6 82.0 | 88.6 72.8 83.6 87.8 90.5

Math GSMS8K (s-shot, coT) 84.5 76.7 53.2 | 9511 88.2 81.6 | 96.8 92.3%  94.2 96.1 96.4¢

MATH (o-shot, coT) 51.9 44.3 13.0 | 68.0 54.1 43.1 | 73.8 41.1 64.5 76.6 71.1
Reasonin ARC Challenge (o-shot) 83.4 87.6 74.2 | 94.8 88.7 83.7 | 96.9 94.6 96.4 96.7 96.7
& GPQA (0enor, com 328 - 288|467 333 308 | 511 - 414 536  59.4
Tool use BFCL 76.1 — 60.4 | 84.8 - 85.9 | 88.5 86.5 88.3 80.5 90.2
Nexus 38.5 30.0 24.7 | 56.7 48.5 37.2 | 58.7 - 50.3 06.1 45.7
ZeroSCROLLS/QuALITY | 81.0 - - 90.5 - - 95.2 — 95.2 90.5 90.5

Long context InfiniteBench/En.MC 65.1 - — 78.2 - - 83.4 = 72.1 82.5 -
NIH/Multi-needle 98.8 - — 97.5 - - 98.1 — 100.0 100.0 90.8
Multilingual MGSM (0-shot, coT) 68.9 53.2 209 | 869 71.1 514 | 91.6 - 85.9 90.5 91.6




Science of Evals still young

Maturation process a



Paper recommendations

Computing standard errors of the mean using the Central Limit Theorem
. When questions are drawn in related groups, computing clustered standard errors

. Reducing variance by resampling answers and by analyzing next-token
probabilities

. When two models are being compared, conducting statistical inference on the
question level paired differences, rather than the population-level summary
statistics

. Using power analysis to determine whether an eval (or a random subsample) is
capable of testing a hypothesis of interest



Standard Errors of the Mean



Standard Error of the Mean

Some notation:

For some question 1 in the dataset,

N—— N—— N——

score of questioni  conditional mean on questioni  conditional variance on question |

Can also talk about any question in the dataset unconditionally: s = x + €

1
Mean of scores: § = — Z S;
n =

l



Standard Error of the Mean

« Our scores can come from any
distribution; how can we say
anything about error bounds if we
don’t know this distribution?

e« CLT to the rescuel!

e CLT says mean of i.i.d random
variables with finite mean and
variance converges can be
approximated with standard normal

Central Limit Theorem: Let Yy, Y,, ..., Y, be independent and identically
distributed random variables with E(Y;) = n and V (Y;) = 0% < 0o. Define

_ Z?:l Yi —nu _ Y —

o\/n o//n
Then the distribution function of U,, converges to the standard normal distribu-
tion function as n — 00. That 1s,

Uy

_ ] <&
where ¥ = — Y;.
2

“ 1 ;
lim P(U, < u) =/ e 1% dy for all u.

n—00 =5 27-[



Standard Error of the Mean

« So the estimate of our mean can be transformed into a standard normal

« We can then also get unbiased estimator of sample variance:

Var(s) = —— Y (5, 5)°

n—1

l

- For n samples, by linearity of variance we recover

1

SEcL.. =/ Var(s)/n = \ (ni 1 Z(Si — 5)2) /T (1)



Standard Error of the Mean

The Standard Normal Distribution
» Using maximum likelihood Shaded Area = 0.9500

estimator (MLE), we declare 5 to
be the estimate of population
mean, and draw a 95%

confidence interval around it
(1.96 sigma)

Density

- Recovers Eq (3):
CI 95% — S+ 1.90 X SEC.L.T.

Z=1.96

IllllIllllllllllllllllllll llllllll Illlllllllllllllllllllllll
30 -25 -20 15 -10 -05 0.0 0.5 1.0 1.5 2.0 2.9 3.0

Z Score



Clustered Standard Errors



Clustered Standard Error

» CLT requires i.i.d assumption
- Some datasets are clearly not i.i.d
« MGSM (Multilingual Grade-School Math):
» 2500 grade-school math questions
» But really: 250 questions translated into 10 different languages

« 250 clusters of 10



Clustered Standard Error

- Why does it fail if observations not i.i.d? SEC-L-T- — \/V&r(s)/n

« “Effective” number of observations much fewer than 2500, probably more
like 250

« Case 1: observation in each cluster is iid (implies O covariance)

« Then

SEClustered —




Clustered Standard Error

« Case 2: observation in each cluster perfectly correlated

« Then

SEc|ustered = \ SE%;,L,T, T % Z 2 Z (Si,c — 5)2

c i J#i
and you add back variance contributions within each cluster

SEc.L.T. = \/Va,r(s)/n — \ (n i 1 Z(Sz’ — 5)2) /m



Recommendation for reporting errors

# Questions | # Clusters “Galleon” “Dreadnought”
DROP | 9,622 588 (807;) (80?'91)
RACE-H 3,498 1,045 (9 01. '55;0) (802 :79;0)
MGSM | 2,500 250 (715.63% (71%0;")

Table 3: We suggest including the cluster count alongside the question count when reporting
cluster-adjusted standard errors (fictional models and numbers).

SEc lustered SEc.L.T. Ratio
DROP (1.34) (0.44) 3.05
RACE-H | (0.51%) (0.46%) 1.10
MGSM (162%) (086%) 1.88

Table 4: Clustered and naive standard errors computed on two popular evals using Anthropic
models (non-fictional numbers). Analyzing the same data, clustered standard errors can be over
3X larger than naive standard errors.



Variance Reduction



Variance Reduction

o 1 B
. Var(jt) = Var (n Z si) = Var(s)/n

i
» Increase number of samples directly reduces variance

« But we still have another trick..



Law of Total Variance

This is tricky to get intuition on
Var(Y) = E[Var(Y | X)] + Var(E[Y | X]

Example: Y is dog’s weight, X is
b free d E(Y|X3)

E(Y) = E(E(Y|X:)) |

E(Y|X4)

First term: avg of variance of weight
within each breed (within-group
variance) B(Y|X1)

E(Y|X>)

Second term: variance of avg of
each breed (between-group
variance)

Figure 3: ANOVA : very good fit



Variance Reduction

FYI: | don’t like their notation for this part, very imprecise

Var(s) = Var ([E[xi | l]) + E [V&I’(Xl— | l)]

variance in scores across different questions  variance in scores from answering the same question across different attempts

Let’s consider resampling
Resampling won't help the first term - this is inherent in the distribution of questions

But it can help to decrease the second term: sampling n times & taking mean will
reduce it by n

Increasing n is economical until the point that second term is same size as first term
(then first term dominates)



Variance Reduction

Var(s) = Var ([E[xl- | i]) + E [Var(xl- | i)]

variance in scores across different questions  variance in scores from answering the same question across different attempts

» Tempting thing to eliminate second term: set temp=0

3.3 Don’t touch the thermostat!

It may be tempting to reduce the “sampling temperature” |10] of the model in order to reduce (or
eliminate) the conditional variance. However, we advise against this practice, unless the purpose
is to study the model at the new temperature. Besides altering the model’s behavior, adjusting
the sampling temperature may simply shift the conditional variance (which can be mitigated
using the two techniques above) into the variance of the conditional means (which cannot), or
else reduce conditional variance by injecting bias into the estimator. Two short examples will

o 1llustrate these points.

» Their example: setting T=0 increases first term



Variance Reduction

Var(s) = Var (E[x, | i]) E |Var(x; | i)

variance in scores across different questions  variance in scores from answering the same question across different attempts

For problems where you can use model logprobs to get probability of
correct answer (i.e true/false gn), here’s another trick:

Instead of sampling the answer token & giving a binary score, return the
probability of correct answer as score

Then second term becomes O @



To be continued next session...



