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Attention



Attention

• Not all parts of the input equally important 
for task at hand 

• E.g. image classification: background does 
not matter, helps to ignore spurious features 

• Idea: provide more weight for more relevant 
features, fade out less relevant features 

• Features now context-aware

Image from Deep Learning with Python 

https://www.manning.com/books/deep-learning-with-python


Attention

• 3 components: query, key, values 

• Terminology inspired by search engines 

• Suppose you have a dataset of key-value 
pairs: (image tags, images) 

• For a given query, how would you weigh 
your values to return the values blended by 
how important they are? 

• Need some notion of similarity between the 
query and each of the keys!

Image from Deep Learning with Python 

https://www.manning.com/books/deep-learning-with-python


Please Pay Attention

• We will derive the most famous equation in machine learning (Eq 1 in 
Attention Is All You Need):  
               

                 Attention(Q, K, V) = softmax ( QK⊤

d ) V

https://arxiv.org/abs/1706.03762


Attention

• Concretely: suppose we have  keys and values  

• Define attention on a query as: 

                                   

for some weighing function  

• Idea: assigns different importance to each  depending on how similar  

and  are!

m {(k1, v1), …(km, vm)}

Attention(q) =
m

∑
i=1

α(q, ki)vi

α(q, ki)

vi q
ki



Attention

•  

• What is a good choice for ?  

• Want non-negativity:  

• Want normalization to 1: 

Attention(q) =
m

∑
i=1

α(q, ki)vi

α(q, ki)

α(q, ki) > 0
m

∑
i=1

α(q, ki) = 1



Attention
• Suppose we have an arbitrary similarity function  

• We can use it to construct : 

• Non-negativity: take exponentials,   

• Normalization to 1: divide by sum of all values, 

                                                            

• Actually the above is just the softmax function: 

                                                          

a(q, ki)

α

exp(a(q, ki)) > 0

α(q, ki) =
exp(a(q, ki))

∑j exp(a(q, kj))
.

softmax(xi) =
exp(xi)

∑j exp(xj)
.



Attention

•  

• What is a good choice for ? 

• Dot product: distance metric that extends to 
arbitrary dimensions, measures “angle” between 
two vectors as notion of similarity 

• So now we have dot product 

Attention(q) =
m

∑
i=1

α(q, ki)vi

a(q, ki)

q⊤ki



Attention
• Suppose  are -dimensional and drawn independently from standard normal 

distribution 

• Dot product  is now the sum of  products of two independent standard Gaussians 

• If  i.i.d, then  

•
By linearity of expectations,  

•
By linearity of variance,  

• High variance leads to instability especially since we have exponentials 😔

q, ki d

q⊤ki d

Xi, Yi ∼ 𝒩(0,1) E[XiYi] = 0, Var(XiYi) = 1

E [
d

∑
i=1

XiYi] = 0

Var (
d

∑
i=1

XiYi) = d



Attention

• Solution: scale by  to result in unit variance, since 

 

• Putting everything together, we have scaled dot-product attention: 

                  

• We are getting close 😊

1/ d
Var(cX) = c2Var(X)

α(q, ki) =
exp(q⊤ki/ d)

∑j exp(q⊤kj/ d)
= softmax ( q⊤ki

d )



Batching

• Jensen Huang has blessed us with GPUs 
optimized for multiplying large matrices 

• Instead of processing just an individual 
sample at a time, more efficient throughput-
wise to batch multiple samples together



Batched Attention

• Suppose you have  queries 
and  keys and  values 
stacked together as matrices 

 respectively 

• Each key, query must have same 
dimension for dot product:  

• Each value has dimension  

• First compute 

n
m m

Q, K, V

dk

dv

QK⊤



Batched Attention

• Next scale matrix entries, take softmax over each row in the matrix 

• Multiply by , get batched attention: 
 
 
 
 
 
 
Overall: 

V

Attention(Q, K, V) = softmax ( QK⊤

d ) V



Self-Attention

• Given input vector  (corresponding to 
some token) 

• Learn weight matrices  

• Project  by respective matrices for query, 
key, and value:

 

• Parallelizing this computation with input 
matrix  instead, we recover

xi

WQ, WK, WV

xi

qi = xiWQ, ki = xiWK, vi = xiWV

X
Q = XWQ, K = XWK, V = XWV

16



Positional Encodings



Positional Encoding

• Self-attention by itself is order-agnostic 

• But ordering information is important in 
language! 

• Idea: for each input token, add (not 
concatenate!) a vector denoting positional 
information to it 

• Drawback to naive approach: short 
sequences much more common than long 
ones during training, so later embeddings 
may be poorly trained and fail to generalize

Naive approach of just using position itself as the position embedding



Positional Encoding

• In Attention Is All You Need, authors used 
sinusoidal positional encoding 

• Positional encoding for th row and  or 
th column in  dimensions: 

•

i 2j 2j + 1
d

pi,2j = sin ( i
100002j/d ),

pi,2j+1 = cos ( i
100002j/d ) .

Position encoding at 
position 5 in 32 dims

Attention Is All You Need (Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762


Why Sinusoidal Positional Encodings?
• Can transform from one index to an offset using only linear 

operations 

• To get from  to : 

• Write  

• Then 

•

pi,2t, pi,2t+1 pi+k,2t pi+k,2t+1

a =
i

100002t/d
, b =

k
100002t/d

.

pi,2t = sin (a)
pi,2t+1 = cos (a)

pi+k,2t = sin (a + b)
pi+k,2t+1 = cos (a + b) .

pi,2j = sin ( i
100002j/d ),

pi,2j+1 = cos ( i
100002j/d ) .

Attention Is All You Need (Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762


Why Sinusoidal Positional Encodings?

• Recall  
 

 

• Then the following rotation matrix gives the desired transformation: 
 

 

• Hope:  learns how to perform this rotation by offsets during training

sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
cos(a + b) = cos(a)cos(b) − sin(a)sin(b)

[ cos(b) sin(b)
−sin(b) cos(b)] [sin(a)

cos(a)] = [sin(a + b)
cos(a + b)] .

W
Attention Is All You Need (Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762


Positional Encoding

• For first layer, add positional encoding to 
embeddings: 

•

qm = Wq (xm + pm)
kn = Wk (xn + pn)
vn = Wv (xn + pn)

Attention Is All You Need (Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762


Flaws

• However, this is still poor for encoding relative positional information if 
you expand the query/key dot product: 

•
 

• Two terms contain only one of  or , not possible to preserve relative 
offsets!

q⊤
mkn = (Wq (xm + pm))

⊤
(Wk (xn + pn))

= x⊤
mW⊤

q Wkxn + x⊤
mW⊤

q Wkpn

+p⊤
mW⊤

q Wkxn + p⊤
mW⊤

q Wkpn

pm pn



RoFormer: Enhanced Transformer 
with Rotary Position Embedding



RoPE

• Used by most open source models today



RoPE

• Faster convergence than with sinusoidal position encoding

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


RoPE

• Used by most open source models today

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


Goals

• Can we come up with a positional encoding scheme that: 

• Models relative positional information directly 

• Doesn’t introduce terms that depend on absolute position indices  

• Perhaps something like 
 
qT

mkn = xT
mWqRn−mWkxn

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


RoPE Overview
• Rotate the pre-activations instead of adding: 

•  

•

qm = Rd
Θ,mWqxm

kn = Rd
Θ,nWkxn

Rd
Θ,m =

cos mθ1 −sin mθ1 0 0 ⋯ 0 0
sin mθ1 cos mθ1 0 0 ⋯ 0 0

0 0 cos mθ2 −sin mθ2 ⋯ 0 0
0 0 sin mθ2 cos mθ2 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ cos mθd/2 −sin mθd/2

0 0 0 0 ⋯ sin mθd/2 cos mθd/2

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


Deriving RoPE



Goal

• Consider  case (can easily generalize from here to even dimensions) 

• Want only dot-product attention to only depend on relative positions:

 

• Goal is to learn a suitable  

• Notation for initial conditions (we can choose  afterwards) 

d = 2

qT
mkn = ⟨fq (xm, m), fk (xn, n)⟩ = g (xm, xn, m − n)

fq, fk, g

q, k
q = fq (xq,0)
k = fk (xk,0)

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


Re-interpretation in Complex Form

• Since , can re-interpret  in complex polar coordinates:

 

• : magnitude 

• : angle

d = 2 fq, fk, g

fq (xq, m) = Rq (xq, m) eiΘq(xq, m)

fk (xk, n) = Rk (xk, n) eiΘk(xk, n)

g (xq, xk, n − m) = Rg (xq, xk, n − m) eiΘg(xq, xk, n − m)

R{q,k,v}

Θ{q,k,g}
RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


Re-interpretation in Complex Form

• Do the same for initial conditions : 
 

q, k

q = ∥q∥eiθq = Rq (xq,0) eiΘq(xq,0)

k = ∥k∥eiθk = Rk (xk,0) eiΘk(xk,0)

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


RoPE Derivation

• For  to be true, this implies: 

 
⟨fq (xm, m), fk (xn, n)⟩ = g (xm, xn, m − n)

Rq (xq, m) Rk (xk, n) = Rg (xq, xk, n − m)
Θk (xk, n) − Θq (xq, m) = Θg (xq, xk, n − m)

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


RoPE Derivation

• Set : 
 
 

m = n

Rq (xq, m) Rk (xk, m) = Rg (xq, xk,0) = Rq (xq,0) Rk (xk,0) = ∥q∥∥k∥,

Θk (xk, m) − Θq (xq, m) = Θg (xq, xk,0) = Θk (xk,0) − Θq (xq,0) = θk − θq .

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously 

Rq (xq, m) Rk (xk, n) = Rg (xq, xk, n − m)
Θk (xk, n) − Θq (xq, m) = Θg (xq, xk, n − m)

https://arxiv.org/abs/2104.09864


RoPE Derivation

•  

• One possible solution for the magnitudes that doesn’t depend on positional 
information at all: 

•
 

• Now we just have to find 

Rq (xq, m) Rk (xk, m) = ∥q∥∥k∥

Rq (xq, m) = Rq (xq,0) = ∥q∥

Rk (xk, n) = Rk (xk,0) = ∥k∥

Rg (xq, xk, n − m) = Rg (xq, xk,0) = ∥q∥∥k∥

Θ{q,k,g}

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


RoPE Derivation

• Rearranging gives 
 

• Observation: 

• Symmetry means  can take on similar functional forms 

•  is a function of  

• Choose: 

Θq(xq, m) − θq = Θk (xk, m) − θk

Θq, Θk

Θ{q,k} (x{q,k}, m) − θ{q,k} m

Θ{q,k} (x{q,k}, m) = ϕ(m) + θ{q,k}

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

 From previously:

Θk (xk, m) − Θq (xq, m) = θk − θq

https://arxiv.org/abs/2104.09864


RoPE Derivation

• Substitute : 

 

• Rearranging: 
 

• RHS is constant with respect to !

n = m + 1
Θk (xk, m + 1) − Θq (xq, m)

= Θg (xq, xk,1)
= ϕ(m + 1) − ϕ(m) + θq − θk

ϕ(m + 1) − ϕ(m) = Θg (xq, xk,1) + θq − θk

m
RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously: 

 

We chose 

Θk (xk, n) − Θq (xq, m) = Θg (xq, xk, n − m)

Θ{q,k} (x{q,k}, m) = ϕ(m) + θ{q,k}

https://arxiv.org/abs/2104.09864


RoPE Derivation

• This induces an arithmetic progression, 
for some  of our choosing: 

•  

• So overall, our angular component is 
 

γ, θ
ϕ(0) = γ
ϕ(m) = mθ + γ

Θ{q,k} (x{q,k}, m) = mθ + γ + θ{q,k}

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously: 

ϕ(m + 1) − ϕ(m) = Θg (xq, xk,1) + θq − θk

https://arxiv.org/abs/2104.09864


RoPE Derivation
• Putting it all together: 

 

• Choose , and set initial conditions to be similar 
to setup in Attention Is All You Need: 

 

• This gives 

 

fq (xq, m) = ∥q∥eiθq+mθ+γ = qei(mθ+γ)

fk (xk, n) = ∥k∥eiθk+nθ+γ = kei(nθ+γ)

γ = 0

q = Wqxn, k = Wkxn

fq (xm, m) = (Wqxm) eimθ

fk (xn, n) = (Wkxn) einθ

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously: 

 
Rq (xq, m) = ∥q∥

Rk (xk, n) = ∥k∥

Θ{q,k} (x{q,k}, m) = mθ + γ + θ{q,k}

https://arxiv.org/abs/2104.09864


RoPE Derivation
• Use rotation matrix to capture rotation: 

•  

• To extend to  (even) dimensions, repeat this for each pair of coordinates with    
(similar to Attention is All You Need): 
 

 

(cos mθ −sin mθ
sin mθ cos mθ ) Wqxm

d θi = 10000−2(i−1)/d

Rd
Θ,m =

cos mθ1 −sin mθ1 0 0 ⋯ 0 0
sin mθ1 cos mθ1 0 0 ⋯ 0 0

0 0 cos mθ2 −sin mθ2 ⋯ 0 0
0 0 sin mθ2 cos mθ2 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ cos mθd/2 −sin mθd/2

0 0 0 0 ⋯ sin mθd/2 cos mθd/2
RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously: 

fq (xm, m) = (Wqxm) eimθ

fk (xn, n) = (Wkxn) einθ

https://arxiv.org/abs/2104.09864


RoPE Derivation

• Finally, we get that the dot-product only gives us relative positional 
information: 

•  

• In each coordinate , rotating anti-clockwise by , then rotating 

clockwise by , for overall rotation of  

• Shows that sinusoidal intuition from Attention Is All You Need is correct, 
but multiplying instead of adding gives a much cleaner formulation!

q⊤
mkn = (Rd

Θ,mWqxm)
⊤

(Rd
Θ,nWkxn) = x⊤WqRd

Θ,n−mWkxn

i nθi
mθi (n − m)θi

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864


Thank you! 
Q&A


