
RoFormer: Enhanced Transformer
with Rotary Position Embedding

fzeng
05/03/24

Outline

• Review of attention and why positional encodings are
needed

• Sinusoidal positional encodings intuition and limitations

• Positional encoding desiderata

• Derivation of rotary positional embeddings

Attention

Attention

• Not all parts of the input equally important
for task at hand

• E.g. image classification: background does
not matter, helps to ignore spurious features

• Idea: provide more weight for more relevant
features, fade out less relevant features

• Features now context-aware

Image from Deep Learning with Python

https://www.manning.com/books/deep-learning-with-python

Attention

• 3 components: query, key, values

• Terminology inspired by search engines

• Suppose you have a dataset of key-value
pairs: (image tags, images)

• For a given query, how would you weigh
your values to return the values blended by
how important they are?

• Need some notion of similarity between the
query and each of the keys!

Image from Deep Learning with Python

https://www.manning.com/books/deep-learning-with-python

Please Pay Attention

• We will derive the most famous equation in machine learning (Eq 1 in
Attention Is All You Need):

 Attention(Q, K, V) = softmax (QK⊤

d) V

https://arxiv.org/abs/1706.03762

Attention

• Concretely: suppose we have keys and values

• Define attention on a query as:

for some weighing function

• Idea: assigns different importance to each depending on how similar

and are!

m {(k1, v1), …(km, vm)}

Attention(q) =
m

∑
i=1

α(q, ki)vi

α(q, ki)

vi q
ki

Attention

•

• What is a good choice for ?

• Want non-negativity:

• Want normalization to 1:

Attention(q) =
m

∑
i=1

α(q, ki)vi

α(q, ki)

α(q, ki) > 0
m

∑
i=1

α(q, ki) = 1

Attention
• Suppose we have an arbitrary similarity function

• We can use it to construct :

• Non-negativity: take exponentials,

• Normalization to 1: divide by sum of all values,

• Actually the above is just the softmax function:

a(q, ki)

α

exp(a(q, ki)) > 0

α(q, ki) =
exp(a(q, ki))

∑j exp(a(q, kj))
.

softmax(xi) =
exp(xi)

∑j exp(xj)
.

Attention

•

• What is a good choice for ?

• Dot product: distance metric that extends to
arbitrary dimensions, measures “angle” between
two vectors as notion of similarity

• So now we have dot product

Attention(q) =
m

∑
i=1

α(q, ki)vi

a(q, ki)

q⊤ki

Attention
• Suppose are -dimensional and drawn independently from standard normal

distribution

• Dot product is now the sum of products of two independent standard Gaussians

• If i.i.d, then

•
By linearity of expectations,

•
By linearity of variance,

• High variance leads to instability especially since we have exponentials 😔

q, ki d

q⊤ki d

Xi, Yi ∼ 𝒩(0,1) E[XiYi] = 0, Var(XiYi) = 1

E [
d

∑
i=1

XiYi] = 0

Var (
d

∑
i=1

XiYi) = d

Attention

• Solution: scale by to result in unit variance, since

• Putting everything together, we have scaled dot-product attention:

• We are getting close 😊

1/ d
Var(cX) = c2Var(X)

α(q, ki) =
exp(q⊤ki/ d)

∑j exp(q⊤kj/ d)
= softmax (q⊤ki

d)

Batching

• Jensen Huang has blessed us with GPUs
optimized for multiplying large matrices

• Instead of processing just an individual
sample at a time, more efficient throughput-
wise to batch multiple samples together

Batched Attention

• Suppose you have queries
and keys and values
stacked together as matrices

 respectively

• Each key, query must have same
dimension for dot product:

• Each value has dimension

• First compute

n
m m

Q, K, V

dk

dv

QK⊤

Batched Attention

• Next scale matrix entries, take softmax over each row in the matrix

• Multiply by , get batched attention:

Overall:

V

Attention(Q, K, V) = softmax (QK⊤

d) V

Self-Attention

• Given input vector (corresponding to
some token)

• Learn weight matrices

• Project by respective matrices for query,
key, and value:

• Parallelizing this computation with input
matrix instead, we recover

xi

WQ, WK, WV

xi

qi = xiWQ, ki = xiWK, vi = xiWV

X
Q = XWQ, K = XWK, V = XWV

16

Positional Encodings

Positional Encoding

• Self-attention by itself is order-agnostic

• But ordering information is important in
language!

• Idea: for each input token, add (not
concatenate!) a vector denoting positional
information to it

• Drawback to naive approach: short
sequences much more common than long
ones during training, so later embeddings
may be poorly trained and fail to generalize

Naive approach of just using position itself as the position embedding

Positional Encoding

• In Attention Is All You Need, authors used
sinusoidal positional encoding

• Positional encoding for th row and or
th column in dimensions:

•

i 2j 2j + 1
d

pi,2j = sin (i
100002j/d),

pi,2j+1 = cos (i
100002j/d) .

Position encoding at
position 5 in 32 dims

Attention Is All You Need (Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762

Why Sinusoidal Positional Encodings?
• Can transform from one index to an offset using only linear

operations

• To get from to :

• Write

• Then

•

pi,2t, pi,2t+1 pi+k,2t pi+k,2t+1

a =
i

100002t/d
, b =

k
100002t/d

.

pi,2t = sin (a)
pi,2t+1 = cos (a)

pi+k,2t = sin (a + b)
pi+k,2t+1 = cos (a + b) .

pi,2j = sin (i
100002j/d),

pi,2j+1 = cos (i
100002j/d) .

Attention Is All You Need (Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762

Why Sinusoidal Positional Encodings?

• Recall

• Then the following rotation matrix gives the desired transformation:

• Hope: learns how to perform this rotation by offsets during training

sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
cos(a + b) = cos(a)cos(b) − sin(a)sin(b)

[cos(b) sin(b)
−sin(b) cos(b)] [sin(a)

cos(a)] = [sin(a + b)
cos(a + b)] .

W
Attention Is All You Need (Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762

Positional Encoding

• For first layer, add positional encoding to
embeddings:

•

qm = Wq (xm + pm)
kn = Wk (xn + pn)
vn = Wv (xn + pn)

Attention Is All You Need (Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762

Flaws

• However, this is still poor for encoding relative positional information if
you expand the query/key dot product:

•

• Two terms contain only one of or , not possible to preserve relative
offsets!

q⊤
mkn = (Wq (xm + pm))

⊤
(Wk (xn + pn))

= x⊤
mW⊤

q Wkxn + x⊤
mW⊤

q Wkpn

+p⊤
mW⊤

q Wkxn + p⊤
mW⊤

q Wkpn

pm pn

RoFormer: Enhanced Transformer
with Rotary Position Embedding

RoPE

• Used by most open source models today

RoPE

• Faster convergence than with sinusoidal position encoding

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

RoPE

• Used by most open source models today

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

Goals

• Can we come up with a positional encoding scheme that:

• Models relative positional information directly

• Doesn’t introduce terms that depend on absolute position indices

• Perhaps something like

qT

mkn = xT
mWqRn−mWkxn

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

RoPE Overview
• Rotate the pre-activations instead of adding:

•

•

qm = Rd
Θ,mWqxm

kn = Rd
Θ,nWkxn

Rd
Θ,m =

cos mθ1 −sin mθ1 0 0 ⋯ 0 0
sin mθ1 cos mθ1 0 0 ⋯ 0 0

0 0 cos mθ2 −sin mθ2 ⋯ 0 0
0 0 sin mθ2 cos mθ2 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ cos mθd/2 −sin mθd/2

0 0 0 0 ⋯ sin mθd/2 cos mθd/2

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

Deriving RoPE

Goal

• Consider case (can easily generalize from here to even dimensions)

• Want only dot-product attention to only depend on relative positions:

• Goal is to learn a suitable

• Notation for initial conditions (we can choose afterwards)

d = 2

qT
mkn = ⟨fq (xm, m), fk (xn, n)⟩ = g (xm, xn, m − n)

fq, fk, g

q, k
q = fq (xq,0)
k = fk (xk,0)

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

Re-interpretation in Complex Form

• Since , can re-interpret in complex polar coordinates:

• : magnitude

• : angle

d = 2 fq, fk, g

fq (xq, m) = Rq (xq, m) eiΘq(xq, m)

fk (xk, n) = Rk (xk, n) eiΘk(xk, n)

g (xq, xk, n − m) = Rg (xq, xk, n − m) eiΘg(xq, xk, n − m)

R{q,k,v}

Θ{q,k,g}
RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

Re-interpretation in Complex Form

• Do the same for initial conditions :

q, k

q = ∥q∥eiθq = Rq (xq,0) eiΘq(xq,0)

k = ∥k∥eiθk = Rk (xk,0) eiΘk(xk,0)

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

RoPE Derivation

• For to be true, this implies:

⟨fq (xm, m), fk (xn, n)⟩ = g (xm, xn, m − n)

Rq (xq, m) Rk (xk, n) = Rg (xq, xk, n − m)
Θk (xk, n) − Θq (xq, m) = Θg (xq, xk, n − m)

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

RoPE Derivation

• Set :

m = n

Rq (xq, m) Rk (xk, m) = Rg (xq, xk,0) = Rq (xq,0) Rk (xk,0) = ∥q∥∥k∥,

Θk (xk, m) − Θq (xq, m) = Θg (xq, xk,0) = Θk (xk,0) − Θq (xq,0) = θk − θq .

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously

Rq (xq, m) Rk (xk, n) = Rg (xq, xk, n − m)
Θk (xk, n) − Θq (xq, m) = Θg (xq, xk, n − m)

https://arxiv.org/abs/2104.09864

RoPE Derivation

•

• One possible solution for the magnitudes that doesn’t depend on positional
information at all:

•

• Now we just have to find

Rq (xq, m) Rk (xk, m) = ∥q∥∥k∥

Rq (xq, m) = Rq (xq,0) = ∥q∥

Rk (xk, n) = Rk (xk,0) = ∥k∥

Rg (xq, xk, n − m) = Rg (xq, xk,0) = ∥q∥∥k∥

Θ{q,k,g}

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

RoPE Derivation

• Rearranging gives

• Observation:

• Symmetry means can take on similar functional forms

• is a function of

• Choose:

Θq(xq, m) − θq = Θk (xk, m) − θk

Θq, Θk

Θ{q,k} (x{q,k}, m) − θ{q,k} m

Θ{q,k} (x{q,k}, m) = ϕ(m) + θ{q,k}

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

 From previously:

Θk (xk, m) − Θq (xq, m) = θk − θq

https://arxiv.org/abs/2104.09864

RoPE Derivation

• Substitute :

• Rearranging:

• RHS is constant with respect to !

n = m + 1
Θk (xk, m + 1) − Θq (xq, m)

= Θg (xq, xk,1)
= ϕ(m + 1) − ϕ(m) + θq − θk

ϕ(m + 1) − ϕ(m) = Θg (xq, xk,1) + θq − θk

m
RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously:

We chose

Θk (xk, n) − Θq (xq, m) = Θg (xq, xk, n − m)

Θ{q,k} (x{q,k}, m) = ϕ(m) + θ{q,k}

https://arxiv.org/abs/2104.09864

RoPE Derivation

• This induces an arithmetic progression,
for some of our choosing:

•

• So overall, our angular component is

γ, θ
ϕ(0) = γ
ϕ(m) = mθ + γ

Θ{q,k} (x{q,k}, m) = mθ + γ + θ{q,k}

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously:

ϕ(m + 1) − ϕ(m) = Θg (xq, xk,1) + θq − θk

https://arxiv.org/abs/2104.09864

RoPE Derivation
• Putting it all together:

• Choose , and set initial conditions to be similar
to setup in Attention Is All You Need:

• This gives

fq (xq, m) = ∥q∥eiθq+mθ+γ = qei(mθ+γ)

fk (xk, n) = ∥k∥eiθk+nθ+γ = kei(nθ+γ)

γ = 0

q = Wqxn, k = Wkxn

fq (xm, m) = (Wqxm) eimθ

fk (xn, n) = (Wkxn) einθ

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously:

Rq (xq, m) = ∥q∥

Rk (xk, n) = ∥k∥

Θ{q,k} (x{q,k}, m) = mθ + γ + θ{q,k}

https://arxiv.org/abs/2104.09864

RoPE Derivation
• Use rotation matrix to capture rotation:

•

• To extend to (even) dimensions, repeat this for each pair of coordinates with
(similar to Attention is All You Need):

(cos mθ −sin mθ
sin mθ cos mθ) Wqxm

d θi = 10000−2(i−1)/d

Rd
Θ,m =

cos mθ1 −sin mθ1 0 0 ⋯ 0 0
sin mθ1 cos mθ1 0 0 ⋯ 0 0

0 0 cos mθ2 −sin mθ2 ⋯ 0 0
0 0 sin mθ2 cos mθ2 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ cos mθd/2 −sin mθd/2

0 0 0 0 ⋯ sin mθd/2 cos mθd/2
RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

From previously:

fq (xm, m) = (Wqxm) eimθ

fk (xn, n) = (Wkxn) einθ

https://arxiv.org/abs/2104.09864

RoPE Derivation

• Finally, we get that the dot-product only gives us relative positional
information:

•

• In each coordinate , rotating anti-clockwise by , then rotating

clockwise by , for overall rotation of

• Shows that sinusoidal intuition from Attention Is All You Need is correct,
but multiplying instead of adding gives a much cleaner formulation!

q⊤
mkn = (Rd

Θ,mWqxm)
⊤

(Rd
Θ,nWkxn) = x⊤WqRd

Θ,n−mWkxn

i nθi
mθi (n − m)θi

RoFormer: Enhanced Transformer with Rotary Position Embedding (Su et al., 2021)

https://arxiv.org/abs/2104.09864

Thank you!
Q&A

