
Parameter-Efficient Fine-Tuning
fzeng

04/30/2024

Fine-Tuning

• Copy weights from pre-trained network

• Perform training on downstream task of interest

• Learn new set of weights

• Naively: use the same architecture and all weights updated

• For over-parameterized networks like LLM, requires a lot of
data to converge

• Large memory footprint to train all parameters

Outline

• Why is fine-tuning necessary?

• Adapter methods (LoRA)

• Quantization

• Prefix Tuning

Scaling Laws for Transfer

Why Fine-Tune At All?
• Models pre-trained on large

datasets have acquired good
representations

• Important in low-data regime

• Right: 40M Transformer
model, pre-training dataset
24b characters

• At 3e5 chars, fine-tuning
performs as well as training
from scratch with 1000x
more data

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293

Scaling Laws for Transfer in the Low-Data Regime

• Data transfer also follows a
power-law (similar to neural
scaling laws)

•

• : transfer multiplier

• : size of fine-tuning distribution

• : number of non-embedding
parameters

DT = effective data transferred = k(DF)α(N)β

k

DF

N

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293

Scaling Laws for Transfer in the Low-Data Regime

•
• For fine-tuning on Python on a

model pre-trained on text,

• Increasing fine-tuning dataset by
100x gives same improvement as
increasing size of model by 10x

DT = effective data transferred = k(DF)α(N)β

β ≈ 2α

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293

Scaling Laws for Transfer

• : measures similarity between pre-training and fine-tuning distribution (smaller for
closer similarity)

• Smaller means less transfer in the high-data regime

• Can conduct experiments to get to understand trade-off between more data or
larger model size

α

α

α, β

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293

Scaling Laws for Transfer

• On low-data regime :

• As fine-tuning data increases, multiplier decreases

DT ≫ DF

Effective data multiplier =
DF + DT

DF
≈

DT

DF
=

k(N)β

(DF)1−α

DF

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293

Can Pre-Training be Harmful?
• Yes, for small models:

• Hypothesized due to pre-training being like a poor initialization point that
fine-tuning has trouble recovering from (“ossification”)

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293

Challenges of Full-Parameter
Fine-Tuning

1.5b parameters does not mean using 6gb of vRAM

• Consider a “small” 1.5b GPT-2 model

• Surely you can fine-tune this on your RTX 4080 16GB GPU?

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al, 2020)

https://arxiv.org/abs/1910.02054

Where did all the memory go?
• For float32 data types:

• Parameters: 4 bytes

• Gradients: 4 bytes

• Optimizer state:

• Suppose we use Adam (most popular for Transformers), which tracks weight and variance
in updates

• 2 * 4 bytes

• Activations: variable (depends on model architecture)

• Also: memory fragmentation, temporary buffers allocated (for gradient norm computation,
etc)

• Total: at least 1.5b * (4 + 4 + 8) bytes = 24GB vRAM
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al, 2020)

https://arxiv.org/abs/1910.02054

Adapter Methods

Simplest method: fine-tune top layers
• Freeze all weights but those at

top layers (or add additional
layers to fine-tune)

• Idea: as you go up the
Transformer layers, you build
up to higher representations

• Top representations
corresponds to high-level
features most useful for a
specific task

• Outperformed by adapters
Parameter-Efficient Transfer Learning for NLP (Houlsby et al. 2019)

https://arxiv.org/abs/1902.00751

Adapters

• Houlsby et al.
introduced adapter
modules in Transformer
layers which are fine-
tuned (all other
parameters fixed)

• Adds 3.6% extra
parameters

Parameter-Efficient Transfer Learning for NLP (Houlsby et al. 2019)

https://arxiv.org/abs/1902.00751

LoRA: Low-Rank Adaptation

• Downside of adapters:

• Increased inference latency

• Performs worse than full-parameter fine-tuning

• LoRA addresses both!

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685

LoRA: Low-Rank Adaptation

• Have a large pre-trained weight
matrix

• Instead of fine-tuning all weights,
consider fine-tuning a low-rank
adapter , where

• as small as 1

• For inputs , forward pass yields

• During back propagation, is frozen

and we only update

d × k
W0

r
AB

A ∈ ℝd×r, B ∈ ℝr×k

r

x
h = W0x + BAx

W0
BA LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685

Which weight matrices to use LoRA for?

• Candidates for Transformer models:

• Weight matrices for self-attention

• Weight matrices for output projection

• Weights for feed-forward networks

Q = XWQ, K = XWK, V = XWV

Wo

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685

 recapWq, Wk, Wv, Wo

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685

Which weight matrices to use LoRA for?

• Generally having both gives best result (as low as rank 4)

• Only fine-tune on an additional 0.01% extra parameters! (18M/
175B for GPT-3)

Wq, Wv

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685

Results

• Note: prefix-tuning approaches start to perform worse when there are too many
parameters, hypothesized due to mismatch between input and pre-training data
distribution

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685

Why does LoRA work?

• Over-parameterized models
have intrinsic low-rank structure
after training

• Manifold hypothesis: real-world
data lives on a low-dimensional
manifold inside a high-
dimensional space

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685

One Base Model, Many Adapters

• Can fine-tune many low-rank adapters for different tasks with
the same base model

• During inference time, dynamically swap out for appropriate
 matrices depending on task, while using shared base

model weights

• Much cheaper than serving different full-parameter fine-
tuned models!

A, B

n

Startups have been built on this idea

Quantization

Quantization

• Using a lower-precision quantized
representation (i.e INT8 instead of FP32)

• Smaller memory footprint

• Also less memory traffic, better able to
take advantage of GPU memory hierarchy

• Less power consumption

• Integer ALU faster, smaller, & consume
less power than floating point ALUs

Full Stack Optimization of Transformer Inference: a Survey (Kim et al., 2023)

https://arxiv.org/abs/2302.14017

Quantization

• 2 main approaches

• Post-training quantization (PTQ)

• Quantize model after training

• Requires calibration

• Quantization-aware training (QAT)

• Incorporates quantization while model
is training

• QLoRA

• Calibration: determining range of values that
the weights/activations take on for rescaling

Absmax quantization

• FP16 input matrix

• To scale inputs into 8-bit range :

• Divide by abs maximum of tensor

• Scale by half of range

• Overall:

where denotes rounding to nearest integer

Xf16

[−127,127]

Xi8 =
127 ⋅ Xf16

maxij(Xf16ij∣)
= ⌊ 127

Xf16
∞

Xf16⌉ = ⌊sxf16
Xf16⌉

⌊⌉

Zeropoint quantization

• Absmax quantization wasteful for
asymmetric distributions

• I.e ReLU activations never use negative
values

• Instead: scale by range, then offset by
smallest value to make sure all values in
range are used

• There are SIMD instructions to do this
efficiently (i.e PMADDUBSW)

https://www.felixcloutier.com/x86/pmaddubsw

bfloat16

• Use more bits for exponents to sacrifice significand precision

• Supports wider range of values

Pop Quiz
What are these animals?

Pop Quiz
They are all named after LLMs!

Guanaco (QLoRA)Vicuna (LMSYS) Alpaca (Stanford)Llama (Meta)

Block-wise Quantization

• Large outlier features in tensors can cause common small magnitude
values to lose a lot of accuracy (quantization error)

• Non-linear quantization methods can address this, but at significant
computational cost

• Solution: block-wise quantization

• Split tensor into blocks

• Quantize each block independently

• Improves quantization precision by isolating outliers

8-bit Optimizers via Block-wise Quantization (Dettmers et al., 2021)

https://arxiv.org/abs/2110.02861

Vector-wise Quantization

• We can apply the same idea for tensors

• Suppose we have hidden states and weights

• Computing requires computing the dot product of each row of against

each column of

• We can perform absmax quantization for each row and column for and

respectively, with normalization constants respectively

•

Xf16 ∈ ℝb×h Wf16 ∈ ℝh×o

Xf16Wf16 Xf16

Wf16

Xf16 Wf16

cxf16
, cwf16

Cf16
≈

1
cxf16

⊗ cwf16

Ci32 =
1

cxf16
⊗ cwf16

Q (Af16) Q (Bf16)
8-bit Optimizers via Block-wise Quantization (Dettmers et al., 2021)

https://arxiv.org/abs/2110.02861

Outlier Features

• As model size increases beyond 6.7B,
emergence of sparse but large magnitude
outlier features ruin quantization precision

• What if we just throw outlier features
away?

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339

Outlier Features Are Essential

• At 6.7B, 150k outliers occur per sequence
concentrated along 6 feature dimensions

• Setting these to 0 causes validation
perplexity to increase by 600-1000%
despite being only 0.1% of input features

• In contrast, setting same amount of
random features to 0 only degrades
perplexity by 0.1%

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339

Outlier Features Are Huge

• As evaluation perplexity decreases, outlier features also blow up in
magnitude & further ruins quantization precision

• Fortunately outlier features are rare

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339

Outlier Features Affects Almost All Layers and Tokens
• Almost all layers and 75% tokens affected by outlier features beyond 6.7B

• Not actually a phase shift but smooth transition when measured against
perplexity

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339

Solution: mixed precision

• Simple solution: Don’t quantize dimensions with outlier features!

• Let be the set of all outlier feature dimensions

• Then

• Only ~7 outlier feature dimensions for Transformers up to 13B, so only
adds 0.1% additional memory

O

Cf16 ≈ ∑
h∈O

Xh
f16W

h
f16 +

1
cxf16

⊗ cwf16

⋅ ∑
h∉O

Xh
i8W

h
i8

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339

QLoRA

• Most of LoRA memory usage not from adapter parameters, but from
activation gradients

• I.e LLaMA 7B batch size 1: input gradients take up 567 MB but LoRA
parameters only use 26 MB

• Marginal savings from trying to use fewer adapter parameters

• They really wanted to fine-tune LLaMA 70B on just 2 consumer GPUs but
LoRA requires 154 GB memory -> 8x consumer GPUs

QLoRA: Efficient Finetuning of Quantized LLMs

https://arxiv.org/abs/2305.14314

Double Quantization

• Block-wise quantization require scaling constants to be saved for each
block

• Smaller blocks help reduce effect of outliers, but requires higher memory
usage

• I.e block size of 64 with 32-bit scaling constants gives 0.5 bits/
parameter memory overhead

• Solution: quantize the quantization constants!

QLoRA: Efficient Finetuning of Quantized LLMs

https://arxiv.org/abs/2305.14314

Double Quantization

• Memory overhead: 8/64 + 32/(64 256) = 0.127 bits per parameter,
reduction of 75%

⋅

QLoRA: Efficient Finetuning of Quantized LLMs

https://arxiv.org/abs/2305.14314

4-bit NormalFloat (NF4)

QLoRA
• Recall LoRA:

• QLoRA:

• Inputs and adapter parameters remain in BF16

• Replicates performance of BF16 fine-tuning!

h = W0x + BAx

YBF16 = XBF16 doubleDequant (cFP32
1 , ck− bit

2 , WNF4) + XBF16LBF16
1 LBF16

2

QLoRA: Efficient Finetuning of Quantized LLMs

https://arxiv.org/abs/2305.14314

Paged Optimizers

• Memory spikes during training
(i.e with long sequence length
inputs) can cause GPU OOM

• They introduced paged
optimizers to page optimizer
state information between GPU
and CPU memory

QLoRA: Efficient Finetuning of Quantized LLMs (Dettmers et al., 2023)

https://arxiv.org/abs/2305.14314

Prefix Tuning

Prefix Tuning

• Alternative approach to adapters for parameter-efficient fine-tuning

• Suppose you have a task with inputs and outputs (i.e text
summarization)

• Could use in-context learning to do this, but:

• Require coming up with prompt that the model can reliably follow

• Hard to optimize prompts

• Optimization over discrete tokens computationally challenging in
general

x y

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)

https://arxiv.org/abs/2101.00190v1

Prefix Tuning

• In prefix-tuning, you add a prefix of activations to all Transformer layers

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)

https://arxiv.org/abs/2101.00190v1

Learning Hidden Activations

• For each of the
prefix indices

, want to
learn activations
i ∈ Pidx

h(1)
i , h(2)

i , ⋯, h(n)
i

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)

https://arxiv.org/abs/2101.00190v1

Training Stability Mitigation

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)

https://arxiv.org/abs/2101.00190v1

Prompt Tuning

Prompt Tuning

• Concurrent work with prefix-tuning

• Instead of learning a prefix of activations, you learn a prefix of “soft
prompts”

• In normal prompting: provide series of tokens which are embedded into
vectors

• Soft prompting: learn a length- prefix of embeddingsp

The Power of Scale for Parameter-Efficient Prompt Tuning (Lester, Al-Rfou, and Constant, 2021)

https://arxiv.org/abs/2104.08691

Prompt Tuning

• Input tokens embedded

into matrix

• Learn length soft prompt

• Transformer input: concatenated
input

• Learn by backpropagation

x1, ⋯, xn
Xe ∈ ℝn×e

p
Pe ∈ ℝp×e

[Pe; Xe]

Pe

The Power of Scale for Parameter-Efficient Prompt Tuning (Lester, Al-Rfou, and Constant, 2021)

https://arxiv.org/abs/2104.08691

Conclusion

Summary

• Techniques to reduce parameters required for fine-tuning:

• Adapter-based

• Prefix/prompt tuning

• Techniques to further reduce memory requirement:

• Quantization

