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Fine-Tuning

• Copy weights from pre-trained network 

• Perform training on downstream task of interest 

• Learn new set of weights 

• Naively: use the same architecture and all weights updated 

• For over-parameterized networks like LLM, requires a lot of 
data to converge 

• Large memory footprint to train all parameters



Outline

• Why is fine-tuning necessary? 

• Adapter methods (LoRA) 

• Quantization 

• Prefix Tuning



Scaling Laws for Transfer



Why Fine-Tune At All?
• Models pre-trained on large 

datasets have acquired good 
representations 

• Important in low-data regime 

• Right: 40M Transformer 
model, pre-training dataset 
24b characters 

• At 3e5 chars, fine-tuning 
performs as well as training 
from scratch with 1000x 
more data

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293


Scaling Laws for Transfer in the Low-Data Regime

• Data transfer also follows a 
power-law (similar to neural 
scaling laws) 

•  

• : transfer multiplier 

• : size of fine-tuning distribution 

• : number of non-embedding 
parameters

DT = effective data transferred = k(DF)α(N)β

k

DF

N

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293


Scaling Laws for Transfer in the Low-Data Regime

•  
• For fine-tuning on Python on a 

model pre-trained on text, 
 

• Increasing fine-tuning dataset by 
100x gives same improvement as 
increasing size of model by 10x

DT = effective data transferred = k(DF)α(N)β

β ≈ 2α

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293


Scaling Laws for Transfer

• : measures similarity between pre-training and fine-tuning distribution (smaller for 
closer similarity) 

• Smaller  means less transfer in the high-data regime 

• Can conduct experiments to get  to understand trade-off between more data or 
larger model size

α

α

α, β

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293


Scaling Laws for Transfer

• On low-data regime :

 

• As fine-tuning data  increases, multiplier decreases

DT ≫ DF

Effective data multiplier =
DF + DT

DF
≈

DT

DF
=

k(N)β

(DF)1−α

DF

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293


Can Pre-Training be Harmful?
• Yes, for small models: 

• Hypothesized due to pre-training being like a poor initialization point that 
fine-tuning has trouble recovering from (“ossification”)

Scaling Laws for Transfer (Hernandez et al, 2021)

https://arxiv.org/abs/2102.01293


Challenges of Full-Parameter 
Fine-Tuning



1.5b parameters does not mean using 6gb of vRAM

• Consider a “small” 1.5b GPT-2 model 

• Surely you can fine-tune this on your RTX 4080 16GB GPU?

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al, 2020)

https://arxiv.org/abs/1910.02054


Where did all the memory go?
• For float32 data types: 

• Parameters: 4 bytes 

• Gradients: 4 bytes 

• Optimizer state:  

• Suppose we use Adam (most popular for Transformers), which tracks weight and variance 
in updates 

• 2 * 4 bytes 

• Activations: variable (depends on model architecture) 

• Also: memory fragmentation, temporary buffers allocated (for gradient norm computation, 
etc) 

• Total: at least  1.5b * (4 + 4 + 8) bytes = 24GB vRAM
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al, 2020)

https://arxiv.org/abs/1910.02054


Adapter Methods



Simplest method: fine-tune top layers
• Freeze all weights but those at 

top layers (or add additional 
layers to fine-tune) 

• Idea: as you go up the 
Transformer layers, you build 
up to higher representations 

• Top representations 
corresponds to high-level 
features most useful for a 
specific task 

• Outperformed by adapters
Parameter-Efficient Transfer Learning for NLP (Houlsby et al. 2019)

https://arxiv.org/abs/1902.00751


Adapters

• Houlsby et al. 
introduced adapter 
modules in Transformer 
layers which are fine-
tuned (all other 
parameters fixed) 

• Adds 3.6% extra 
parameters

Parameter-Efficient Transfer Learning for NLP (Houlsby et al. 2019)

https://arxiv.org/abs/1902.00751


LoRA: Low-Rank Adaptation

• Downside of adapters: 

• Increased inference latency 

• Performs worse than full-parameter fine-tuning 

• LoRA addresses both!

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685


LoRA: Low-Rank Adaptation

• Have a large pre-trained  weight 
matrix  

• Instead of fine-tuning all weights, 
consider fine-tuning a low-rank  
adapter , where 

  

•  as small as 1 

• For inputs , forward pass yields 
 

• During back propagation,  is frozen 

and we only update 

d × k
W0

r
AB

A ∈ ℝd×r, B ∈ ℝr×k

r

x
h = W0x + BAx

W0
BA LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685


Which weight matrices to use LoRA for?

• Candidates for Transformer models:  

• Weight matrices for self-attention
 

• Weight matrices for output projection 
 

• Weights for feed-forward networks

Q = XWQ, K = XWK, V = XWV

Wo

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685


 recapWq, Wk, Wv, Wo

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685


Which weight matrices to use LoRA for?

• Generally having both  gives best result (as low as rank 4) 

• Only fine-tune on an additional 0.01% extra parameters! (18M/
175B for GPT-3)

Wq, Wv

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685


Results

• Note: prefix-tuning approaches start to perform worse when there are too many 
parameters, hypothesized due to mismatch between input and pre-training data 
distribution

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685


Why does LoRA work?

• Over-parameterized models 
have intrinsic low-rank structure 
after training 

• Manifold hypothesis: real-world 
data lives on a low-dimensional 
manifold inside a high-
dimensional space

LoRA: Low-Rank Adaptation of Large Language Models (Hu et al, 2021)

https://arxiv.org/abs/2106.09685


One Base Model, Many Adapters

• Can fine-tune many low-rank adapters for different tasks with 
the same base model 

• During inference time, dynamically swap out for appropriate 
 matrices  depending on task, while using shared base 

model weights 

• Much cheaper than serving  different full-parameter fine-
tuned models!

A, B

n



Startups have been built on this idea



Quantization



Quantization

• Using a lower-precision quantized 
representation (i.e INT8 instead of FP32) 

• Smaller memory footprint 

• Also less memory traffic, better able to 
take advantage of GPU memory hierarchy 

• Less power consumption 

• Integer ALU faster, smaller, & consume 
less power than floating point ALUs

Full Stack Optimization of Transformer Inference: a Survey (Kim et al., 2023)

https://arxiv.org/abs/2302.14017


Quantization

• 2 main approaches 

• Post-training quantization (PTQ) 

• Quantize model after training 

• Requires calibration 

• Quantization-aware training (QAT) 

• Incorporates quantization while model 
is training 

• QLoRA 

• Calibration: determining range of values that 
the weights/activations take on for rescaling



Absmax quantization

• FP16 input matrix  

• To scale inputs into 8-bit range : 

• Divide by abs maximum of tensor 

• Scale by half of range 

• Overall: 

 

where  denotes rounding to nearest integer

Xf16

[−127,127]

Xi8 =
127 ⋅ Xf16

maxij( Xf16ij∣ )
= ⌊ 127

Xf16
∞

Xf16⌉ = ⌊sxf16
Xf16⌉

⌊⌉



Zeropoint quantization

• Absmax quantization wasteful for 
asymmetric distributions 

• I.e ReLU activations never use negative 
values 

• Instead: scale by range, then offset by 
smallest value to make sure all values in 
range are used 

• There are SIMD instructions to do this 
efficiently (i.e PMADDUBSW)

https://www.felixcloutier.com/x86/pmaddubsw


bfloat16

• Use more bits for exponents to sacrifice significand precision 

• Supports wider range of values



Pop Quiz
What are these animals?



Pop Quiz
They are all named after LLMs!

Guanaco (QLoRA)Vicuna (LMSYS) Alpaca (Stanford)Llama (Meta)



Block-wise Quantization

• Large outlier features in tensors can cause common small magnitude 
values to lose a lot of accuracy (quantization error) 

• Non-linear quantization methods can address this, but at significant 
computational cost 

• Solution: block-wise quantization 

• Split tensor into blocks 

• Quantize each block independently 

• Improves quantization precision by isolating outliers 

8-bit Optimizers via Block-wise Quantization (Dettmers et al., 2021)

https://arxiv.org/abs/2110.02861


Vector-wise Quantization

• We can apply the same idea for tensors 

• Suppose we have hidden states  and weights  

• Computing  requires computing the dot product of each row of  against 

each column of  

• We can perform absmax quantization for each row and column for  and  

respectively, with normalization constants  respectively 

•

Xf16 ∈ ℝb×h Wf16 ∈ ℝh×o

Xf16Wf16 Xf16

Wf16

Xf16 Wf16

cxf16
, cwf16

Cf16
≈

1
cxf16

⊗ cwf16

Ci32 =
1

cxf16
⊗ cwf16

Q (Af16) Q (Bf16)
8-bit Optimizers via Block-wise Quantization (Dettmers et al., 2021)

https://arxiv.org/abs/2110.02861


Outlier Features

• As model size increases beyond 6.7B, 
emergence of sparse but large magnitude 
outlier features ruin quantization precision 

• What if we just throw outlier features 
away?

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339


Outlier Features Are Essential

• At 6.7B, 150k outliers occur per sequence 
concentrated along 6 feature dimensions 

• Setting these to 0 causes validation 
perplexity to increase by 600-1000% 
despite being only 0.1% of input features 

• In contrast, setting same amount of 
random features to 0 only degrades 
perplexity by 0.1% 

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339


Outlier Features Are Huge

• As evaluation perplexity decreases, outlier features also blow up in 
magnitude & further ruins quantization precision 

• Fortunately outlier features are rare

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339


Outlier Features Affects Almost All Layers and Tokens
• Almost all layers and 75% tokens affected by outlier features beyond 6.7B 

• Not actually a phase shift but smooth transition when measured against 
perplexity

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339


Solution: mixed precision

• Simple solution: Don’t quantize dimensions with outlier features! 

• Let  be the set of all outlier feature dimensions 

• Then 

 

• Only ~7 outlier feature dimensions for Transformers up to 13B, so only 
adds 0.1% additional memory

O

Cf16 ≈ ∑
h∈O

Xh
f16W

h
f16 +

1
cxf16

⊗ cwf16

⋅ ∑
h∉O

Xh
i8W

h
i8

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

https://arxiv.org/abs/2208.07339


QLoRA

• Most of LoRA memory usage not from adapter parameters, but from 
activation gradients 

• I.e LLaMA 7B batch size 1: input gradients take up 567 MB but LoRA 
parameters only use 26 MB  

• Marginal savings from trying to use fewer adapter parameters 

• They really wanted to fine-tune LLaMA 70B on just 2 consumer GPUs but 
LoRA requires 154 GB memory -> 8x consumer GPUs

QLoRA: Efficient Finetuning of Quantized LLMs 

https://arxiv.org/abs/2305.14314


Double Quantization 

• Block-wise quantization require scaling constants to be saved for each 
block 

• Smaller blocks help reduce effect of outliers, but requires higher memory 
usage 

• I.e block size of 64 with 32-bit scaling constants gives 0.5 bits/
parameter memory overhead 

• Solution: quantize the quantization constants!

QLoRA: Efficient Finetuning of Quantized LLMs 

https://arxiv.org/abs/2305.14314


Double Quantization 

• Memory overhead: 8/64 + 32/(64  256) = 0.127 bits per parameter, 
reduction of 75%

⋅

QLoRA: Efficient Finetuning of Quantized LLMs 

https://arxiv.org/abs/2305.14314


4-bit NormalFloat (NF4)



QLoRA
• Recall LoRA:  

• QLoRA:
 

• Inputs and adapter parameters remain in BF16 

• Replicates performance of BF16 fine-tuning!

h = W0x + BAx

YBF16 = XBF16 doubleDequant  (cFP32
1 , ck− bit 

2 , WNF4) + XBF16LBF16
1 LBF16

2

QLoRA: Efficient Finetuning of Quantized LLMs 

https://arxiv.org/abs/2305.14314


Paged Optimizers

• Memory spikes during training 
(i.e with long sequence length 
inputs) can cause GPU OOM 

• They introduced paged 
optimizers to page optimizer 
state information between GPU 
and CPU memory

QLoRA: Efficient Finetuning of Quantized LLMs (Dettmers et al., 2023)

https://arxiv.org/abs/2305.14314


Prefix Tuning



Prefix Tuning

• Alternative approach to adapters for parameter-efficient fine-tuning 

• Suppose you have a task with inputs  and outputs  (i.e text 
summarization) 

• Could use in-context learning to do this, but: 

• Require coming up with prompt that the model can reliably follow 

• Hard to optimize prompts 

• Optimization over discrete tokens computationally challenging in 
general 

x y

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)

https://arxiv.org/abs/2101.00190v1


Prefix Tuning

• In prefix-tuning, you add a prefix of activations to all Transformer layers

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)

https://arxiv.org/abs/2101.00190v1


Learning Hidden Activations

• For each of the 
prefix indices 

, want to 
learn activations 
i ∈ Pidx

h(1)
i , h(2)

i , ⋯, h(n)
i

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)

https://arxiv.org/abs/2101.00190v1


Training Stability Mitigation

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)

https://arxiv.org/abs/2101.00190v1


Prompt Tuning



Prompt Tuning

• Concurrent work with prefix-tuning 

• Instead of learning a prefix of activations, you learn a prefix of “soft 
prompts” 

• In normal prompting: provide series of tokens which are embedded into 
vectors 

•  Soft prompting: learn a length-  prefix of embeddingsp

The Power of Scale for Parameter-Efficient Prompt Tuning (Lester, Al-Rfou, and Constant, 2021)

https://arxiv.org/abs/2104.08691


Prompt Tuning

• Input tokens  embedded 

into matrix  

• Learn length  soft prompt 
 

• Transformer input: concatenated 
input  

• Learn  by backpropagation

x1, ⋯, xn
Xe ∈ ℝn×e

p
Pe ∈ ℝp×e

[Pe; Xe]

Pe

The Power of Scale for Parameter-Efficient Prompt Tuning (Lester, Al-Rfou, and Constant, 2021)

https://arxiv.org/abs/2104.08691


Conclusion



Summary

• Techniques to reduce parameters required for fine-tuning: 

• Adapter-based 

• Prefix/prompt tuning 

• Techniques to further reduce memory requirement: 

• Quantization


