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Fine-Tuning

Copy weights from pre-trained network

Perform training on downstream task of interest

Learn new set of weights

Naively: use the same architecture and all weights updatead

« For over-parameterized networks like LLM, requires a lot of
data to converge

» Large memory footprint to train all parameters



Outline

» Why is fine-tuning necessary?
« Adapter methods (LoRA)
« Quantization

» Prefix Tuning



Scaling Laws for Transfer



Why Fine-Tune At All?

Models pre-trained on large

datasets have acquired good

representations

Important in low-data regime  3x10°:

Right: 40M Transformer

Visual Explanation of Effective Data Transferred
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Scaling Laws for Transfer in the Low-Data Regime

- Data transfer also follows a pre-trained on Text
power-law (similar to neural
scaling laws)

Dy = 1.9e4(Dp)'*(N)*

0.999 -

* D, = effective data transferred = k(D,)*(N )

0.990 -

. k: transfer multiplier g
0.900 1

D+/Dg, fraction of effective data from transfer

» Dy size of fine-tuning distribution
0.500
« N: number of non-embedding
parameters R Y Py &

parameters

Scaling Laws for Transfer (Hernandez et al, 2021)
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Scaling Laws for Transfer in the Low-Data Regime

* D, = effective data transferred = k(D)*(N )& Pre-trained on Text

 For fine-tuning on Python on a
model pre-trained on text,

b~ 2ax

» Increasing fine-tuning dataset by
100x gives same improvement as
increasing size of model by 10x

Dy = 1.9e4(Dp)'*(N)*
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0.990 -
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D+/Dg, fraction of effective data from transfer
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Scaling Laws for Transfer

Transfer Coefficients

Transfer from k o 15,

Text = Python 1.9¢e4 | 0.18 | 0.38
50% Text and 50% non-python code = Python | 2.1e5 | 0.096 | 0.38

« : measures similarity between pre-training and fine-tuning distribution (smaller for
closer similarity)

- Smaller & means less transfer in the high-data regime

. Can conduct experiments to get a, / to understand trade-off between more data or
larger model size

Scaling Laws for Transfer (Hernandez et al, 2021)
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Scaling Laws for Transfer

. On low-data regime Dy > Dy
D.+D; Dy  k(NY

Dy Dy ( DF) [—a

Effective data multiplier =

2

. As fine-tuning data Dy increases, multiplier decreases

Scaling Laws for Transfer (Hernandez et al, 2021)



https://arxiv.org/abs/2102.01293

Can Pre-Training be Harmful?

« Yes, for small models:

Trained from Scratch Pre-trained on Text
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« Hypothesized due to pre-training being like a poor initialization point that
fine-tuning has trouble recovering from (“ossification”)

Scaling Laws for Transfer (Hernandez et al, 2021)
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Challenges of Full-Parameter
Fine-Tuning



1.5b parameters does not mean using 6gb of vVRAM

« Consider a “small” 1.5b GPT-2 model
« Surely you can fine-tune this on your RTX 4080 16GB GPU?

RuntimeError: CUDA out of memory. Tried to allocate 200.00 MiB (GPU ©0; 15.78 GiB total
capacility; 14.56 GiB already allocated; 38.44 MiB free; 14.80 G1B reserved 1n total by

PyTorch) If reserved memory 1s >> allocated memory try setting max _split size mb to avoid

fragmentation. See documentation for Memory Management and PYTORCH CUDA ALLOC CONF

ZeR0O: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al, 2020)


https://arxiv.org/abs/1910.02054

Where did all the memory go?

For float32 data types:
Parameters: 4 bytes
Gradients: 4 bytes
Optimizer state:

» Suppose we use Adam (most popular for Transformers), which tracks weight and variance
In updates

« 2* 4 bytes
Activations: variable (depends on model architecture)

Also: memory fragmentation, temporary buffers allocated (for gradient norm computation,
etc)

Total: at least 1.5b * (4 + 4 + 8) bytes = 24GB vRAM

ZeR0O: Memory Optimizations Toward Training Trillion Parameter Models (Rajbhandari et al, 2020)
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Adapter Methods



Simplest method: fine-tune top layers

Freeze all weights but those at
top layers (or add additional
layers to fine-tune)

ldea: as you go up the
Transformer layers, you build
up to higher representations

Top representations
corresponds to high-level
features most useful for a
specific task

Outperformed by adapters

arameter-Efficient Transfer Learning for NLP (Houlsby et al.
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LoRA: Low-Rank Adaptation

« Downside of adapters:
 Increased inference latency

» Performs worse than full-parameter fine-tuning
- LORA addresses both!

LoRA: Low-Rank Adaptation of | arge Language Models (Hu et al, 2021)
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LoRA: Low-Rank Adaptation

. Have a large pre-trained d X k weight
matrix WO

» Instead of fine-tuning all weights,
consider fine-tuning a low-rank r

adapter AB, where
A€l erBel rXk

« rassmall as

« For inputs x, forward pass yields
h — Wo.x -+ BAX

» During back propagation, W, is frozen

and we only update BA

K " N
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LoRA: Low-Rank Adaptation of | arge Language Models (Hu et al, 2021)
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« Candidates for Transformer models:

- Weight matrices for self-attention

Q = XWZ K = XWX vV = XW"

Which weight matrices to use LoRA for?

Feed
Forward
)
j )

Feed
Forward
\

» Weight matrices for output projection

W¢ " '

|

» Weights for feed-forward networks \ ®$
)

Positional
Encoding

Input
Embedding

INputs

LoRA: Low-Rank Adaptation of | arge Language Models (Hu et al, 2021)
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W42, WX, W, W° recap
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Concatenate ' head1 output val | head2 output val | head3 output val | head4 output val
Outputs [Nxd,] [Nxd,] [Nxd,] [Nxd,]
IN x hdv] A
we, wk, wV,  Head4
Multihead wQ,, wK,, wV, Head 3
Attention Layer
with h=4 heads
wQ  wk  wV Head 1
\_ J

IN x d]

(8

5 )

LoRA: Low-Rank Adaptation of | arge Language Models (Hu et al, 2021)
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Which weight matrices to use LoRA for?

of Trainable Parameters = 18M
Weight Type W, Wi W, Wo W, Wi, W, W, W, W, Wy, W,
Rank r 8 8 8 8 4 4 2
WikiSQL (£0.5%) | 704 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI (£0.1%) | 91.0 90.8 91.0 91.3 01.3 01.3 91.7

. Generally having both Wq, W_ gives best result (as low as rank 4)

« Only fine-tune on an additional 0.01% extra parameters! (18M/
175B for GPT-3)

LoRA: Low-Rank Adaptation of | arge Language Models (Hu et al, 2021)
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Validation Accuracy

Results

WikiSQL MultiNLI-matched

0.75 ¢ Y:s _ . 0.92 .

v /\ // |
0.70 *- X

% 0.90 *{ Kk
* 3 Method
0.65 *x e Fine-Tune 0.88 *
PrefixEmbed
0.60 % PrefixLayer 0.86
- Adapter(H)
0.55 LORA 0.84
6 7/ 8 9 10 11 6 7/ 8 9 10 11
log1o # Trainable Parameters logio # Trainable Parameters

« Note: prefix-tuning approaches start to perform worse when there are too many
parameters, hypothesized due to mismatch between input and pre-training data
distribution

LoRA: Low-Rank Adaptation of | arge Language Models (Hu et al, 2021)
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Why does LoRA work?

« Over-parameterized models
have intrinsic low-rank structure
after training

» Manifold hypothesis: real-world
data lives on a low-dimensional
manifold inside a high-
dimensional space

LoRA: Low-Rank Adaptation of | arge Language Models (Hu et al, 2021)
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One Base Model, Many Adapters

« Can fine-tune many low-rank adapters for different tasks with
the same base model

» During inference time, dynamically swap out for appropriate

A, B matrices depending on task, while using shared base
model weights

- Much cheaper than serving n different full-parameter fine-
tuned models!



Startups have been built on this idea

Efficient Fine-Tuning and Serving

» Predibase

Train and deploy task-specific open-source models in record time and under budget.

L

First-class fine-tuning
experience

Predibase offers state-of-the-art fine-
tuning technigues out of the box such as
guantization, low-rank adaptation, and
memory-efficient distributed training to
ensure your fine-tuning jobs are fast and
efficient—even on commodity GPUSs.

=

The most cost-effective
serving infra

With Serverless Fine-Tuned Endpoints and
token-based pricing you can stop paying for
GPU resources you don’'t need. Our unique
serving infra—LoRAX-lets you cost-
effectively serve many fine-tuned adapters
on a single GPU in dedicated deployments.

2
7

Your Models, Your
Property

Start owning and stop renting your LLMSs.
The models you build and customize on
Predibase are your property, regardless of
whether you use the Predibase Cloud and
Serverless Fine-Tuned Endpoints or deploy
iInside your VPC.



Quantization



Quantization

S\ SRAM:19TB/s (20 MB)
SRAM Y

GPU
HBM

Using a lower-precision quantized T\ o 128.Goe
representation (i.e INT8 instead of FP32) (CPU DRAM) (>1TB)

HBM: 1.5 TB/s (40 GB)

Smaller memory footprint

{ Il Titan RTX

=
o
w

+ Also less memory traftic, better able to §
take advantage of GPU memory hierarchy g

Less power consumption

FP32 FP16 INTS INT4
Data Type
. Int ALU faster, smaller, & m
n e g e r a S e r' S a e r' C O n S u e Relative Energy Cost Relative Area Cost
. . Operation: Energy(pJ): Area(um?): |

8b Add 0.03 36

less power than floating point ALUs :
32b Add 0.1 137
16b FP Add 0.4 1360
32b FP Add 0.9 4184
8b Mult 0.2 282
32b Mult 3.1 ‘ 3495
16b FP Mult 1.1 1640
32b FP Mult 3.7 7700
32b SRAM Read (8kb)5.0 N/A
32b DRAM Read 640 . IN/A |

1 10 100 1000 10000 1 10 100 1000

Full Stack Optimization of Transformer Inference: a Survey (Kim et al., 2023)
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Quantization

- 2 main approaches

Pretrained mode|
» Post-training quantization (PTQ) PTQ i
- Quantize model after training Qumfmml

« Requires calibration

Callbration data » Calibrate model

. Quantization-aware training (QAT) |

v
« |Incorporates quantization while model "TQ'I"“’"'
IS training e [
° QLO R A Training data —»  Finetune model
. . . |
 Calibration: determining range of values that )

QAT model

the weights/activations take on for rescaling




Absmax quantization

. FP16 input matrix X4

. To scale inputs into 8-bit range [—127,127]:
» Divide by abs maximum of tensor

- Scale by half of range

« QOverall:

Arie;

where | | denotes rounding to nearest integer



Zeropoint quantization

- Absmax quantization wasteful for
asymmetric distributions

RelLU Activation Function

10 A

 |.e RelLU activations never use negative
values 8

 |nstead: scale by range, then offset by
smallest value to make sure all values in
range are used .

Y Axis

max(0,x)

« There are SIMD instructions to do this e
efficiently (i.e PMADDUBSW)



https://www.felixcloutier.com/x86/pmaddubsw

bfloat16

» Use more bits for exponents to sacrifice significand precision

» Supports wider range of values

IEEE half-precision 16-bit float

sign exponent (5 bit) fraction (10 bit)
| | | | |
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
15 14 10 9 0
bfloat16
sign exponent (8 bit) fraction (7 bit)
| | | |
0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0

15 14 7 6 0



Pop Quiz

What are these animals?




Pop Quiz

They are all named after LLMs!

Llama (Meta) Vicuna (LMSYS) Guanaco (QLoRA) Alpaca (Stanford)



Block-wise Quantization

» Large outlier features in tensors can cause common small magnitude
values to lose a lot of accuracy (quantization error)

« Non-linear quantization methods can address this, but at significant
computational cost

 Solution: block-wise quantization
» Split tensor into blocks
» Quantize each block independently

» |mproves quantization precision by isolating outliers

8-bit Optimizers via Block-wise Quantization (Dettmers et al., 2021


https://arxiv.org/abs/2110.02861

Vector-wise Quantization

We can apply the same idea for tensors

b

Suppose we have hidden states X, € R?*" and weights W, € R/
116 f16

Computing Xﬂ6Wﬂ6 requires computing the dot product of each row of Xf16 against

each column of W, ¢

We can perform absmax quantization for each row and column for X g and W ¢

respectively, with normalization constants cx]%, cwf16 respectively
|

1
Chie ® . Cizp = . Q (Afm) Q (Bfm)

A116 ® CWfl6 A116 ® chlé

8-bit Optimizers via Block-wise Quantization (Dettmers et al., 2021
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Outlier Features

- As model size increases beyond 6.7B, —
emergence of sparse but large magnitude I
. . . . o o —— 16-bit baseline
outlier features ruin quantization precision
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° |
away? 3 / |
N > |
S .,./ |
= |
0.4 |
emergence of ——
outlier features |
0.3 |
\:ﬁ,;“ 0)(9@\ \;,,% %@% b,.\%
Parameters

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)
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https://arxiv.org/abs/2208.07339

Outlier Features Are Essential

« At 6.7B, 150k outliers occur per sequence

. . Method : '/.—
concentrated along 6 feature dimensions T R
0.7 — 16-bit baseline go—°
» Setting these to O causes validation > ~
. . > 7
perplexity to increase by 600-1000% 300 \
: : : o |
despite being only 0.1% of input features & / |
» |n contrast, setting same amount of g :
0.4 |
random. features to O only degrades T
perplexity by 0.1%  outlier features ]
\?& f>§°§\ NS S N T S \?%Q)
Parameters

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)
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Outlier Features Are Huge

« As evaluation perplexity decreases, outlier features also blow up in
magnitude & further ruins quantization precision

« Fortunately outlier features are rare

60 |
emergence of g | 7 |
outlier features | |
@
S 50 | '
o | ° |
5 — |
E 40 l 3 5 |
= | S
5 |
@ "
= | g |
4
8 30 | -'(36‘ |
@ | 0]
- Y— |
D | T 3
© = |
9 20 | = / |
C @
|
0 g emergence of |
Y90 | outlier features|
= |
1 |
I 1
35 30 25 20 15 35 30 25 20 15
C4 perplexity C4 perplexity

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)
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Outlier Features Affects Almost All Layers and Tokens
- Almost all layers and 75% tokens affected by outlier features beyond 6.7B

« Not actually a phase shift but smooth transition when measured against
perplexity

4 ® % layers affected

% tokens affected /
80 emergence of |

outlier features

100

| 100 :oo
|

80

60
60

40
40

emergence of
4 outlier features

Percentage of layers or tokens affected

r

Percentage of layers or tokens affected

35 30 25 20 15

0 2 4 6 8 10 12 C4 perplexity

Parameters in billions
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)
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Solution: mixed precision

Simple solution: Don’t quantize dimensions with outlier features!

Let O be the set of all outlier feature dimensions

W e ZX

xf16 Wf16 h&O

Only ~7 outlier feature dimensions for Transformers up to 13B, so only
adds 0.1% additional memory

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)
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QLoRA

- Most of LoORA memory usage not from adapter parameters, but from
activation gradients

- |.e LLaMA 7B batch size 1: input gradients take up 567 MB but LoRA
parameters only use 26 MB

- Marginal savings from trying to use fewer adapter parameters

« They really wanted to fine-tune LLaMA 70B on just 2 consumer GPUs but
LORA requires 154 GB memory -> 8x consumer GPUs

QLoRA: Efficient Finetuning of Quantized LLMs
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Double Quantization

- Block-wise quantization require scaling constants to be saved for each
block

- Smaller blocks help reduce effect of outliers, but requires higher memory
usage

. |.e block size of 64 with 32-bit scaling constants gives 0.5 bits/
parameter memory overhead

 Solution: quantize the quantization constants!

QLoRA: Efficient Finetuning of Quantized LLMs
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Double Quantization
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« Memory overhead: 8/64 + 32/(64 - 256) = 0127 bits per parameter,
reduction of 75%

QLoRA: Efficient Finetuning of Quantized LLMs
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4-bit NormalFloat (NF4)
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QLoRA

Recall LoRA: h = Wyx + BAx

QLORA:
YBF16 — XBFI6 40 bleDequant (Cfmz, ck=bit. WNF4) + XBFI6[ BFI6p BFIG

Inputs and adapter parameters remain in BF16

MMLU Accuracy on FLAN v2

BN Floatd

(®))
w

BN NF4

e BFloatlé6

Replicates performance of BF16 fine-tuning!

Accuracy Score
9 (o))
(&) o

wn
o

B
9y

40 -

Llama-7B Llama-13B Llama-33B Llama-65B Mean
Model

QLoRA: Efficient Finetuning of Quantized LI Ms
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Paged Optimizers

« Memory spikes during training Unified Memory

GPU Memory Unified Memory

(i.e with Iong segquence Iength Dramatically Lower Developer Effort

inputs) can cause GPU OOM Developer View Today Developer View Wit
 They introduced paged TE .

optimizers to page optimizer 1 ,

state information between GPU N

and CPU memory

QLoRA: Efficient Finetuning of Quantized LLMs (Dettmers et al., 2023)
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Prefix Tuning



Prefix Tuning

 Alternative approach to adapters for parameter-efficient fine-tuning

» Suppose you have a task with inputs x and outputs y (i.e text
summarization)

« Could use in-context learning to do this, but:
« Require coming up with prompt that the model can reliably follow
- Hard to optimize prompts

- Optimization over discrete tokens computationally challenging in
general

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)
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Prefix Tuning

. |n prefix-tuning, you add a prefix of activations to all Transformer layers

Autoregressive Model (e.g. GPT2)

PREFIX £ (source table y (target utterance)
Z Harry Potter , Education , Hogwarts [SEP] Harry Potter is graduated from Hogwarts .

Activation hq ho hs hsa hs hg hy hs hg hio hi1 hi1o  hia hia his

Indexing l1 2l 13 o 5 ©6 7 8 llg 10 11 12 13 14 15 l

Pidx = [1, 2] Xiax = [3,4,5,6,7, 8] Yiex = [9,10,11, 12,13, 14, 15]

Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)
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Learning Hidden Activations

« For each of the
prefix indices

1 € P.;,, want to
learn activations
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. Optimizing Continuous Prompts for Generation (Li and Liang, 2021)
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Training Stability Mitigation
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Prefix-Tuning: Optimizing Continuous Prompts for Generation (Li and Liang, 2021)
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Prompt Tuning



Prompt Tuning

Concurrent work with prefix-tuning

Instead of learning a prefix of activations, you learn a prefix of “soft
prompts”

In normal prompting: provide series of tokens which are embedded into
vectors

Soft prompting: learn a length-p prefix of embeddings

The Power of Scale for Parameter-Efficient Prompt Tuning (Lester, Al-Rfou, and Constant, 2021)
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Prompt Tuning

e
Input tokens x;, «-+, x, embedded o |
into matrix X, € R"*¢ |

x, |
Learn length p soft prompt .
Pe E L pXe Z . n &r

; Embedding y X
Transformer input: concatenated | e
input | P,; X, |

Xy

Learn P, by backpropagation

The Power of Scale for Parameter-Efficiernc: v tuininiyg weower, mimivvu, anu wuiiowaniy cusiy
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Conclusion



Summary

« Techniques to reduce parameters required for fine-tuning:
- Adapter-based
« Prefix/prompt tuning

« Techniques to further reduce memory requirement:

« Quantization



