
Convergence and Generalization of Neural
Networks:

Neural Tangent Kernels and Beyond

fzeng 2025-02-21
1

The big questions of our times…

• You wake up one Saturday morning,

• and you ask yourself…

2

Modern neural networks are overparameterized…

3

4

But yet it seems to help instead of hurt

5

But yet it seems to help instead of hurt

6

7

8

Why does SGD work so well in practice…

• Even though it could get stuck in
exponentially many saddle points?

9

And yet they are so sensitive to initialization?

10

Are residual connections strictly necessary to train deep networks?

11

Or is there something deeper at play?

12

Overview

• [Neal ’94] Infinite width single-layer neural networks are Gaussian processes
(NNGP)

• [Jacot et al. ’18] NTK paper

• Extended NNGP to multi-layer MLPs

• Introduced NTK to analyze backward pass

• [Yang et al. ’19-23] Tensor Program series

• Architecture universality of NNGP and NTK

• Feature learning for NTK via Maximal Update Parametrization (µP)

• Zero-shot Hyper-parameter transfer

13

Part 1: Infinite-width Single-Layer Neural
Networks are Gaussian Processes

14

Forward Pass in the Infinite-Width Limit

• If we adopt a Bayesian view towards neural
networks, then the choice of initialization
reflect our priors

• What does a Gaussian prior imply for what the
(untrained) network computes?

15

Forward Pass in the Infinite-Width Limit

• Consider NN with 1 hidden layer with
 hidden units and tanh activation, 0

mean Gaussian initialization

• Can show that if we scale initialization
by , each converges to

 by CLT

• If we consider joint distribution of
, turns out

they converge to a multivariate
Gaussian

H

1/H fk(x)
𝒩(0,σv)

fk(x(1)), fk(x(2)), ⋯, fk(x(n))

16

Forward Pass in the Infinite-Width Limit

• Distributions over
functions like this is a
Gaussian process

• Implies that we can use
perform exact Bayesian
inference to “train on”
infinite-width NNs

17

The Intellectual Predecessor to NTK

18

Part 2: Neural Tangent Kernel

19

Neural Tangent Kernel

• Showed that in the limit of large width,
a NN optimized via gradient descent
evolves like a linear model

• 2 steps in analysis:

• Initialization: if a neural network is
parametrized and initialized
appropriately, then its NTK
converges to a deterministic kernel

• Training: as the network undergoes
training, its NTK remains frozen in its
initial step, and the network evolves
like kernel gradient descent via

Θ∞

Θ∞

20

NTK Initialization

Standard multi-layer MLP:

• All parameters initialized by

• Note: they moved the factor outside, an analysis for this choice will be
explained with µP later

α(0)(x; θ) = x

α̃(ℓ+1)(x; θ) =
1
nℓ

W(ℓ)α(ℓ)(x; θ) + βb(ℓ)

α(ℓ)(x; θ) = σ (α̃(ℓ)(x; θ)),

𝒩(0,1)

1/nl

21

NTK Initialization

• NTK defined as inner product of Jacobian of network output wrt its
parameters :  

• This is a kernel wrt and

• What is a kernel?

• is a similarity measure between its inputs

• Associated with a feature map :

θ
Θ(x, x′￼) = ⟨∇θ f(x; θ), ∇θ f(x′￼; θ)⟩

x x′￼

K(x, x′￼)

ϕ K(x, x′￼) = ⟨ϕ(x), ϕ(x′￼)⟩

22

NTK Initialization

• Inner product between every pair of features

converges even though is random!

• “Strange” condition: requires taking in that sequence,
nobody does that

∇θ f(x; θ), ∇θ f(x′￼; θ)
θ

n1, ⋯, nL → ∞

23

NTK Training

• We can perform a first-order Taylor approximation of the neural network around
some base point : 

• Good approximation as long as close to

• Prima facie this seems useless - feels like can’t change if doesn’t change
much. But in high dimensions this is actually possible

• And in fact they showed this is an accurate description of training dynamics in
the infinite width limit

• So like doing linear regression against input featurizer, model evolves linearly

θ0
f(x; θ) − f (x; θ0) ≈ ⟨∇θ f (x; θ0), θ − θ0⟩

θ θ0

f θ

24

NTK Training

• Previous attempts to analyze optimization trajectories quickly became
hopelessly complicated precisely because of all the changing quantities

• But they showed that the limiting NTK stays constant over time:

25

NTK Training

• Then it can be shown that the network under gradient flow follows the
following ODE:

• This becomes just kernel gradient descent with fixed kernel

• Convex problem

• PD kernel converges to global min

• If is least-squares loss, we can solve this explicitly for all :

∂t ft = − ηΘ∞ ⋅ ∇f L(ft)

Θ∞

L t
ft − f ⋆ = e−ηtΘ∞(f0 − f ⋆)

26

Generalization Properties

• Kernel gradient descent has implicit bias towards minimizing the RKHS
norm

• Results in choosing simpler solutions that generalizes better

27

Summary

• When the widths of a network tend to infinity with appropriately
initialized weights, its NTK converges deterministically to a limiting
kernel

• During training, this kernel remains constant and follows kernel gradient
descent with a convex trajectory

• So all we need to understand gradient descent is its NTK

• Solves age-old question of why NNs can be trained to do so well even
though landscape is non-convex

28

“Results” 🤔

• Some toy experiments to give
empirical evidence NTK
converges to its limiting kernel
as width

• Plot: for fixed

,
to visualize values of kernel

n → ∞

Θ(x0, x)
x0 = (1,0) x = (cos(γ), sin(γ))

29

Limitations

• No feature learning: in the NTK limit, layer features learned during
training essentially same as that from random initialization, aka “lazy
training”

• But we know empirically (i.e Imagenet, BERT) that feature learning is
important in DL

30

Extending NTK

• Subsequent flurry of work to try to extend NTK to other architectures:

• [Arora, Du et al. ’19] CNNs (CNTK)

• [Du, Hou et al. ’19] Graph Neural Tangent Kernel

• [Alemohammad, Wang et al. ’20] RNNs: Recurrent NTK

• [Hron, Bahri et al. ’20] Attention: Infinite Attention

31

Part 3: Tensor Programs

32

Tensor Programs

• To derive a unified Theory of Everything for deep
learning

Greg Yang, behind the Tensor
Programs series and currently

working on Grok

33

Tensor Programs

• Observation: (almost) all NNs
are defined in terms of:

• Matrix multiplication (MatMul)

• Taking a linear combination
(LinComb)

• Non-linearity (NonLin)

• For different architectures, we
just have to translate them to a
Tensor Program and
mechanically turn the crank to
track correlations btw vectors &
apply the Master Theorem

34

Tensor Programs

• Why does it work?

35

Tensor Programs I

36

Tensor Programs II

37

Tensor Programs IV

• Common
parametrizations for
neural networks can be
defined in terms of:

• (a) Scalings of weights

• (b) Scaling initialization
variance

• (c) Scaling learning
rate

38

Intuition

• Scaling weights vs initialization is symmetric: we can proportionately
increase one while decreasing the other to preserve the same functional
behavior

• I.e functionally same as

• By controlling between and , we can influence the per-layer learning

rate as the gradients for layer get scaled by

al bl

1/ nW, W ∼ 𝒩(0,1) W, W ∼ 𝒩(0,1/n)

al bl
l al

39

Tensor Programs IV

• Stable: initial
activations/
preactivations,
changes in
features, changes
logits are all O(1)

• Feature learning:
feature change
has
coordinates

Ω(1)

40

Tensor Programs IV

• Note: they modified SP to have LR 1/n to avoid blowup, this forces it into uninteresting
kernel regime

41

Comparison for 3 layer NN

• Standard parametrization:

•

•

• NTK Parametrization:

•

•

f(x) = W3Tϕ (W2Tϕ (W1Tx))
W1

ij ∼ 𝒩(0,1), W2
ij, W3

ij ∼ 𝒩(0,1/n)

f(x) =
1

n
W3Tϕ (1

n
W2Tϕ (W1Tx))

W1
ij, W2

ij, W3
ij ∼ 𝒩(0,1)

• µP:

•

•

• All uses LR =

f(x) =
1

n
W3Tϕ W2Tϕ (1

n
W1Tx)

W1
ij, W2

ij, W3
ij ∼ 𝒩(0,1/n)

η

42

Tensor Programs IV

43

Tensor Programs IV

• Their Maximal Update Parametrization (µP) allows for “maximal” updates
in the sense of (1) changes in each coordinate during training while
being stable

• This is unique:

• This gives rise to feature learning

Θ

44

Experiments

• As predicted by theory,
optimal LR with µP doesn’t
change much across width

• In SP going wider can lead
to worse performance

45

Tensor Programs IV

• Can NTK be “fixed” to have feature learning? No:

• Proof:

46

Zero-Shot Hyper-Parameter
Transfer

47

Tensor Programs V

• How to select hyper-parameters across different model sizes/
architectures?

48

Tensor Programs V

• With standard parametrization,
best LR at smaller width could
be terrible for larger widths

49

Tensor Programs V

• Significant major practical
application from this line of work

• Problem: hyper-parameter tuning
on large networks (i.e LLM
training runs) expensive

• They show that we can tune
hyper-parameters on smaller
models, and transfer them to
larger models using µP

50

Tensor Programs V

• Hyper-parameter
stability: tune once,
transfer across any
width (with theoretical
justification)

• What can be
transferred?

51

• But empirically works
for other dimensions
too:

• Depth

• Batch size

• Sequence length

• Training time

52

Tensor Programs V

• SP does not work:
some layer updates
too fast, others too
slow

• Problems that µP
was designed to
avoid

53

Summary
• NTK was close to answering many questions in DL theory

• In the infinite-width limit, a network’s NTK converges to a deterministic kernel, and stays
constant throughout training

• Training described by kernel gradient descent

• Convergence, global optimality now very easy to show

• Tensor Programs developed to analyze limiting behavior of NNs, showed NNGP and NTK
behavior universal

• Fatal flaw: lack of feature learning, proven impossible to have together with kernel
dynamics

• µP parametrization arose from TP analysis and supports feature learning while being stable

• This is also stable for transferring hyper-parameters across widths (and empirically other
dimensions)

54

