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The big questions of our times…

• You wake up one Saturday morning,


• and you ask yourself…
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Modern neural networks are overparameterized…

3



4



But yet it seems to help instead of hurt
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But yet it seems to help instead of hurt
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Why does SGD work so well in practice…

• Even though it could get stuck in 
exponentially many saddle points?
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And yet they are so sensitive to initialization?
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Are residual connections strictly necessary to train deep networks?
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Or is there something deeper at play?
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Overview

• [Neal ’94] Infinite width single-layer neural networks are Gaussian processes 
(NNGP)


• [Jacot et al. ’18] NTK paper


• Extended NNGP to multi-layer MLPs


• Introduced NTK to analyze backward pass


• [Yang et al. ’19-23] Tensor Program series


• Architecture universality of NNGP and NTK


• Feature learning for NTK via Maximal Update Parametrization (µP)


• Zero-shot Hyper-parameter transfer
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Part 1: Infinite-width Single-Layer Neural 
Networks are Gaussian Processes
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Forward Pass in the Infinite-Width Limit

• If we adopt a Bayesian view towards neural 
networks, then the choice of initialization 
reflect our priors


• What does a Gaussian prior imply for what the 
(untrained) network computes?
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Forward Pass in the Infinite-Width Limit

• Consider NN with 1 hidden layer with 
 hidden units and tanh activation, 0 

mean Gaussian initialization


• Can show that if we scale initialization 
by , each  converges to 

 by CLT


• If we consider joint distribution of 
, turns out 

they converge to a multivariate 
Gaussian

H

1/H fk(x)
𝒩(0,σv)

fk(x(1)), fk(x(2)), ⋯, fk(x(n))

16



Forward Pass in the Infinite-Width Limit

• Distributions over 
functions like this is a 
Gaussian process


• Implies that we can use  
perform exact Bayesian 
inference to “train on” 
infinite-width NNs

17



The Intellectual Predecessor to NTK 
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Part 2: Neural Tangent Kernel
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Neural Tangent Kernel

• Showed that in the limit of large width, 
a NN optimized via gradient descent 
evolves like a linear model


• 2 steps in analysis:


• Initialization: if a neural network is 
parametrized and initialized 
appropriately, then its NTK 
converges to a deterministic kernel 




• Training: as the network undergoes 
training, its NTK remains frozen in its 
initial step, and the network evolves 
like kernel gradient descent via 

Θ∞

Θ∞
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NTK Initialization

Standard multi-layer MLP:





• All parameters initialized by 


• Note: they moved the  factor outside, an analysis for this choice will be 
explained with µP later

α(0)(x; θ) = x

α̃(ℓ+1)(x; θ) =
1
nℓ

W(ℓ)α(ℓ)(x; θ) + βb(ℓ)

α(ℓ)(x; θ) = σ (α̃(ℓ)(x; θ)),

𝒩(0,1)

1/nl
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NTK Initialization

• NTK defined as inner product of Jacobian of network output wrt its 
parameters :  
                          


• This is a kernel wrt  and  


• What is a kernel?


•  is a similarity measure between its inputs


• Associated with a feature map : 

θ
Θ(x, x′￼) = ⟨∇θ f(x; θ), ∇θ f(x′￼; θ)⟩

x x′￼

K(x, x′￼)

ϕ K(x, x′￼) = ⟨ϕ(x), ϕ(x′￼)⟩
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NTK Initialization

• Inner product between every pair of features  

converges even though  is random!


• “Strange” condition: requires taking  in that sequence, 
nobody does that

∇θ f(x; θ), ∇θ f(x′￼; θ)
θ

n1, ⋯, nL → ∞
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NTK Training

• We can perform a first-order Taylor approximation of the neural network around 
some base point : 




• Good approximation as long as  close to 


• Prima facie this seems useless - feels like  can’t change if  doesn’t change 
much. But in high dimensions this is actually possible


• And in fact they showed this is an accurate description of training dynamics in 
the infinite width limit


• So like doing linear regression against input featurizer, model evolves linearly

θ0
f(x; θ) − f (x; θ0) ≈ ⟨∇θ f (x; θ0), θ − θ0⟩

θ θ0

f θ
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NTK Training

• Previous attempts to analyze optimization trajectories quickly became 
hopelessly complicated precisely because of all the changing quantities


• But they showed that the limiting NTK stays constant over time:
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NTK Training

• Then it can be shown that the network under gradient flow follows the 
following ODE: 


• This becomes just kernel gradient descent with fixed kernel 


• Convex problem


• PD kernel converges to global min


• If  is least-squares loss, we can solve this explicitly for all :

∂t ft = − ηΘ∞ ⋅ ∇f L( ft)

Θ∞

L t
ft − f ⋆ = e−ηtΘ∞( f0 − f ⋆)

26



Generalization Properties

• Kernel gradient descent has implicit bias towards minimizing the RKHS 
norm


• Results in choosing simpler solutions that generalizes better
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Summary

• When the widths of a network tend to infinity with appropriately 
initialized weights, its NTK converges deterministically to a limiting 
kernel


• During training, this kernel remains constant and follows kernel gradient 
descent with a convex trajectory


• So all we need to understand gradient descent is its NTK


• Solves age-old question of why NNs can be trained to do so well even 
though landscape is non-convex
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“Results” 🤔

• Some toy experiments to give 
empirical evidence NTK 
converges to its limiting kernel 
as width 


• Plot:  for fixed 

,  
to visualize values of kernel

n → ∞

Θ(x0, x)
x0 = (1,0) x = (cos(γ), sin(γ))
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Limitations

• No feature learning: in the NTK limit, layer features learned during 
training essentially same as that from random initialization, aka “lazy 
training”


• But we know empirically (i.e Imagenet, BERT) that feature learning is 
important in DL 
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Extending NTK

• Subsequent flurry of work to try to extend NTK to other architectures:


• [Arora, Du et al. ’19] CNNs (CNTK)


• [Du, Hou et al. ’19] Graph Neural Tangent Kernel


• [Alemohammad, Wang et al. ’20] RNNs: Recurrent NTK


• [Hron, Bahri et al. ’20] Attention: Infinite Attention

31



Part 3: Tensor Programs
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Tensor Programs

• To derive a unified Theory of Everything for deep 
learning

Greg Yang, behind the Tensor 
Programs series and currently 

working on Grok
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Tensor Programs

• Observation: (almost) all NNs 
are defined in terms of:


• Matrix multiplication (MatMul)


• Taking a linear combination 
(LinComb)


• Non-linearity (NonLin)


• For different architectures, we 
just have to translate them to a 
Tensor Program and 
mechanically turn the crank to 
track correlations btw vectors & 
apply the Master Theorem
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Tensor Programs

• Why does it work?
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Tensor Programs I
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Tensor Programs II
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Tensor Programs IV

• Common 
parametrizations for 
neural networks can be 
defined in terms of: 


• (a) Scalings of weights 


• (b) Scaling initialization 
variance


• (c) Scaling learning 
rate
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Intuition 

• Scaling weights  vs initialization  is symmetric: we can proportionately 
increase one while decreasing the other to preserve the same functional 
behavior


• I.e  functionally same as 


• By controlling between  and , we can influence the per-layer learning 

rate as the gradients for layer  get scaled by 

al bl

1/ nW, W ∼ 𝒩(0,1) W, W ∼ 𝒩(0,1/n)

al bl
l al
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Tensor Programs IV

• Stable: initial 
activations/
preactivations, 
changes in 
features, changes 
logits are all O(1)


• Feature learning: 
feature change 
has  
coordinates 

Ω(1)
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Tensor Programs IV

• Note: they modified SP to have LR 1/n to avoid blowup, this forces it into uninteresting 
kernel regime
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Comparison for 3 layer NN

• Standard parametrization:


• 


• 


• NTK Parametrization:


•



•

f(x) = W3Tϕ (W2Tϕ (W1Tx))
W1

ij ∼ 𝒩(0,1), W2
ij, W3

ij ∼ 𝒩(0,1/n)

f(x) =
1

n
W3Tϕ ( 1

n
W2Tϕ (W1Tx))

W1
ij, W2

ij, W3
ij ∼ 𝒩(0,1)

• µP:


• 


• 


• All uses LR = 

f(x) =
1

n
W3Tϕ W2Tϕ ( 1

n
W1Tx)

W1
ij, W2

ij, W3
ij ∼ 𝒩(0,1/n)

η
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Tensor Programs IV
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Tensor Programs IV

• Their Maximal Update Parametrization (µP) allows for “maximal” updates 
in the sense of (1) changes in each coordinate during training while 
being stable


• This is unique:


• This gives rise to feature learning

Θ
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Experiments

• As predicted by theory, 
optimal LR with µP doesn’t 
change much across width


• In SP going wider can lead 
to worse performance
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Tensor Programs IV

• Can NTK be “fixed” to have feature learning? No:


• Proof:
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Zero-Shot Hyper-Parameter 
Transfer
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Tensor Programs V

• How to select hyper-parameters across different model sizes/
architectures?
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Tensor Programs V

• With standard parametrization, 
best LR at smaller width could 
be terrible for larger widths
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Tensor Programs V

• Significant major practical 
application from this line of work


• Problem: hyper-parameter tuning 
on large networks (i.e LLM 
training runs) expensive


• They show that we can tune 
hyper-parameters on smaller 
models, and transfer them to 
larger models using µP
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Tensor Programs V

• Hyper-parameter 
stability: tune once, 
transfer across any 
width (with theoretical 
justification)


• What can be 
transferred?
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• But empirically works 
for other dimensions 
too:


• Depth


• Batch size


• Sequence length


• Training time
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Tensor Programs V

• SP does not work: 
some layer updates 
too fast, others too 
slow


• Problems that µP 
was designed to 
avoid
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Summary
• NTK was close to answering many questions in DL theory


• In the infinite-width limit, a network’s NTK converges to a deterministic kernel, and stays 
constant throughout training


• Training described by kernel gradient descent


• Convergence, global optimality now very easy to show


• Tensor Programs developed to analyze limiting behavior of NNs, showed NNGP and NTK 
behavior universal


• Fatal flaw: lack of feature learning, proven impossible to have together with kernel 
dynamics


• µP parametrization arose from TP analysis and supports feature learning while being stable


• This is also stable for transferring hyper-parameters across widths (and empirically other 
dimensions)
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