Convergence and Generalization of Neural
Networks:
Neural Tangent Kernels and Beyond

fzeng 2025-02-21

1

The big questions of our times...

» You wake up one Saturday morning,

« and you ask yourself...

Modern neural networks are overparameterized...

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
Benjamin Recht' Oriol Vinyals

University of California, Berkeley Google DeepMind
brecht@berkeley.edu vinyals@google.com

Randomization tests. At the heart of our methodology is a variant of the well-known randomiza-
tion test from non-parametric statistics (Edgington & Onghena, 2007). In a first set of experiments,
we train several standard architectures on a copy of the data where the true labels were replaced by

random labels. Our central finding can be summarized as:

Deep neural networks easily fit random labels.

3

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26,03
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1,649,402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12

£ N NN

4 ”~a ~

But yet it seems to help instead of hurt

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran* Gal Kaplun' Yamini Bansal' Tristan Yang
Harvard University Harvard University Harvard University Harvard University
Boaz Barak Ilya Sutskever

Harvard University OpenAl

Classical Regime:
Bias-Variance Tradeoff

A

[AV4
‘ i
. 0.5 :
: .
© 0.3 \ !
— \ i
— \\ I
—~ 0.2 R
7 L

\\ %.

1

0.0 10 20 30 40 50 60

ResNetl8 gvidth parameter

But yet it seems to help instead of hurt

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran* Gal Kaplun' Yamini Bansal' Tristan Yang
Harvard University Harvard University Harvard University Harvard University
Boaz Barak Ilya Sutskever
Harvard University OpenAl
Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
A Ve A .
i
0.5 . Critical — Test
—) . "
O : Regime Train
t i
= 0.4 i
- !
© 0.3 '
— \ i .
= N Interpolation
—~0.2 \ '(_/ Threshold
4+ |
8 \
\
= 0.1 !
'\
N _
OO ' —B8 X ¥ ¥ — —_ v v
1 10 20 30 40 50 60

ResNetl8 gvidth parameter

0.5 0.5
0.4 0.4
))
E =
S 03¢ S 03¢
o o
2 >
B02F @02F
O 0
O O
0.1f 0.1
0 ' ' ' ' 0 :
1 2 3 4 5 05 1 15 2 25 3
lterations %< 10% lterations <104
(a) Original Landscape (b) Overparametrized Landscape

Figure: Data is generated from network with k3 = 50 neurons.

Overparametrized network has £ = 100 neurons®.

7

Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks

Chaoyue Liu?, Libin Zhu®°¢, and Mikhail Belkin®

Local minima Global minima

(a) Loss landscape of under-parameterized models (b) Loss landscape of over-parameterized models

Why does SGD work so well in practice...

Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization

- Even though it could get stuck in

Yann N. Dauphin Razvan Pascanu

t . | | m d d | 1 t ? Université de Montréal Université de Montréal
eXpO n e n Ia y a ny Sa e po I n S ° dauphiya@iro.umontreal.ca r.pascanul@gmail.com
Caglar Gulcehre Kyunghyun Cho
Université de Montréal Université de Montréal
gulcehrc@iro.umontreal.ca kyunghyun.cho@umontreal.ca
Surya Ganguli Yoshua Bengio

Stanford University Université de Montréal, CIFAR Fellow
sganguli@standford.edu yoshua.bengio@umontreal.ca

with much higher error than the global minimum. Here we argue, based on re-
sults from statistical physics, random matrix theory, neural network theory, and
empirical evidence, that a deeper and more profound difficulty originates from the
proliferation of saddle points, not local minima, especially in high dimensional
problems of practical interest. Such saddle points are surrounded by high error
plateaus that can dramatically slow down learning, and give the 1llusory impres-

sion of the existence of a local minimum. Motivated by these arguments, we
9

And yet they are so sensitive to initialization?

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle Michael Carbin
MIT CSAIL MIT CSAIL
jfrankle@csail.mit.edu mcarbin@csail.mit.edu

We find that a standard pruning technique naturally uncovers subnetworks whose
initializations made them capable of training effectively. Based on these results, we
articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward
networks contain subnetworks (winning tickets) that—when trained 1n 1solation—
reach test accuracy comparable to the original network in a similar number of
iterations. The winning tickets we find have won the 1nitialization lottery: their
connections have 1nitial weights that make training particularly etfective.

10

Are residual connections strictly necessary to train deep networks?

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqging Ren Jian Sun

Microsoft Research
{kahe, v-xiangz, v-shren, jiansun } @microsoft.com

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable compdtisons of sharpness/flatness between the two figures.

Or is there something deeper at play?

Dynamical Isometry and a Mean Field Theory of CNNs:
How to Train 10,000-Layer Vanilla Convolutional Neural Networks

Lechao Xiao!? Yasaman Bahri!? Jascha Sohl-Dickstein

e depth=1250
e depth=2500

depth=5000
e Jepth=10000

10°

104

10°

10°

e depth=1250
= depth=2500

depth=5000
e Jepth=10000

10°

10°

Steps

10°

10°

I Samuel S. Schoenholz ' Jeffrey Pennington '

Figure 1. Extremely deep CNNs can be trained without the use
of batch normalization or residual connections simply by using
a Delta-Orthogonal initialization with critical weight and bias
variance and appropriate (in this case, tanh) nonlinearity. Test
(solid) and training (dashed) curves on MNIST (top) and CIFAR-
10 (bottom) for depths 1,250, 2,500, 5,000, and 10, 000.

12

Overview

- [Neal '94] Infinite width single-layer neural networks are Gaussian processes
(NNGP)

 [Jacot et al. 18] NTK paper
- Extended NNGP to multi-layer MLPs
 Introduced NTK to analyze backward pass
» [Yang et al. "19-23] Tensor Program series
» Architecture universality of NNGP and NTK
 Feature learning for NTK via Maximal Update Parametrization (uP)

« Zero-shot Hyper-parameter transfer

13

Part 1: Infinite-width Single-Layer Neural
Networks are Gaussian Processes

Forward Pass in the Infinite-Width Limit

. |f we adopt a Bayesian view towards neural
networks, then the choice of initialization

reflect our priors

- What does a Gaussian prior imply for what the

(untrained) network computes?

15

Priors tor Infinite Networks

Radford M. Neal

Technical Report CRG-TR-94-1
Department of Computer Science
University of Toronto
10 King’s College Road
Toronto, Canada MbHS 1A4

E-mail: radford@cs.toronto.edu

1 March 1994

Forward Pass in the Infinite-Width Limit

« Consider NN with 1 hidden layer with
H hidden units and tanh activation, O

TN T g
mean Gaussian initialization R e m%(é%zé)
- Can show that if we scale initialization e S \
by 1/H, each f,(x) convergesto " °© o e >§< °© e 00
H
A/(O,Uv) by CLT r o i (%) = év\gkhd(f)
~_— K $=

. |f we consider joint distribution of

f,xWD), £(x9), - £,(x™), turns out
they converge to a multivariate

Gaussian

16

Forward Pass in the Infinite-Width Limit

« Distributions over

functions like this is a

Gausslian process

- Implies that we can use
perform exact Bayesian
inference to “train on”

infinite-width NNs

w{\

O
\\“ ‘, “'ll " '/\ I
’ /'A'%" "\l "‘ “‘\}u‘ :’ \ /A\
l‘ /
\’\'/ t“‘ X "’ R \'\\:h‘\v '/"‘\'i\ ‘ l)‘*\ "6‘/ w’ "I‘\ AO0h)
’ “ ‘\ ; o ‘A'"l‘h
M oy S il
‘)!\' l"‘ v,“o,:‘\, ‘ “\“‘” W] \‘.,“ ‘\. ‘ “1‘"\\‘:
(\" ‘\ ! . (;\\
T :"

17

\

N M "
= ‘5:'0’0 o \\\\‘\t?fﬁzfﬂo\“%\‘\‘\‘\\' QU
x ,.:~'~'0.toto,.‘\«:.:\\\\\szzzo:s;;lm\‘¢;§‘\‘\‘\‘\!0lo‘&¢ 5N
". ‘ ’ ‘\\\’“ ' ""k \‘ “‘I‘\, .‘.’ 'I""/' ll’lé 1II/”“ “‘ A
' <7 " N 7/ N 7H+ ,/,,'.
z.;’:%“ ,;, X 7,.0";,9,.-’,;;;;0,3(3!,;, ~:,' ’%2..
3 \\(,4 o ‘}\\\ ”

’a \\ .

A\... A N\
‘%;y' ﬁ?g.él‘\sy;»

1’ 777 /0"
\ A 5,,.%,’7777 ‘\Vl.

7

‘\\ \
, 40\[/ “ X \"17/" '
' "’\ \\ 7".' \\‘

The Intellectual Predecessor to NTK
/ \

Forward pass: NNGP | N N Backward pass: NTK

~—/

Part 2: Neural Tangent Kernel

- Showed that in the limit of large width,
a NN optimized via gradient descent
evolves like a linear model

« 2 steps in analysis:

. |nitialization: if a neural network is
parametrized and initialized
appropriately, then its NTK
converges to a deterministic kernel

©

- Training: as the network undergoes
training, its NTK remains frozen in its
initial step, and the network evolves

©9)

ike kernel gradient descent via ©

Neural Tangent Kernel

Neural Tangent Kernel:
Convergence and Generalization in Neural Networks

Arthur Jacot

Ecole Polytechnique Fédérale de Lausanne
arthur. jacot@netopera.net

Franck Gabriel

Imperial College London and Ecole Polytechnique Fédérale de Lausanne
franckrgabriel@gmail.com

Clément Hongler

Ecole Polytechnique Fédérale de Lausanne
clement.hongler@gmail.com

20

NTK Initialization

Standard multi-layer MLP:
aV(x; 0) = x

T D(x; 0) = WOaO(x; 0) + pb'

VAL
a(x;0) = o (a'(x; 0)),
. All parameters initialized by 4(0,1)

- Note: they moved the 1/n, factor outside, an analysis for this choice will be
explained with yP later

21

NTK Initialization

« NTK defined as inner product of Jacobian of network output wrt its
parameters 6:

Ox,x) = (Vo fix; 0), Vo fix'; 6))

. This is a kernel wrt x and x’

« What is a kernel?

.« K(x,x") is a similarity measure between its inputs

. Associated with a feature map ¢: K(x, x") = (¢(x), p(x))

22

NTK Initialization

Theorem 1. For a network of depth L at initialization, with a Lipschitz nonlinearity o, and in the
limit as the layers widthny, ...,ny,_1 — 0o, the NTK ©'L) converges in probability to a deterministic
limiting kernel.:

o) 50l Id,, .

+ Inner product between every pair of features V, f(x; 0), V, f(x’; 0)

converges even though € is random!

- “Strange” condition: requires taking ny, ---,n; — ©0 in that sequence,
nobody does that

23

NTK Training

« We can perform a first-order Taylor approximation of the neural network around
some base point 6

160) = £ (x:60) ~ (Vo (x:6).0 6)
. Good approximation as long as 0 close to 6,

- Prima facie this seems useless - feels like f can’t change if @ doesn’t change
much. But in high dimensions this is actually possible

» And in fact they showed this is an accurate description of training dynamics in
the infinite width limit

- So like doing linear regression against input featurizer, model evolves linearly

24

NTK Training

» Previous attempts to analyze optimization trajectories quickly became
hopelessly complicated precisely because of all the changing quantities

- But they showed that the limiting NTK stays constant over time:

Theorem 2. Assume that o is a Lipschitz, twice differentiable nonlinearity function, with bounded

second derivative. For any T such that the integral |, OT |
ni,...,Np_1 — 00, we have, uniformly for t € [0, T/,

o) » el @ Id,, .

pindt stays stochastically bounded, as

As a consequence, in this limit, the dynamics of fy is described by the differential equation

8tft9(t) — (D@ég)@IdnL ((dta >p"'n) y

25

NTK Training

- Then it can be shown that the network under gradient flow follows the
following ODE: 9, f, = — O, - V/L(f,)

. This becomes just kernel gradient descent with fixed kernel ©®

« Convex problem

« PD kernel converges to global min

. If L is least-squares loss, we can solve this explicitly for all t:

fi=f* = 7O fy —)

26

Generalization Properties

- Kernel gradient descent has implicit bias towards minimizing the RKHS
norm

» Results in choosing simpler solutions that generalizes better

27

Summary

When the widths of a network tend to infinity with appropriately
initialized weights, its NTK converges deterministically to a limiting
kernel

During training, this kernel remains constant and follows kernel gradient
descent with a convex trajectory

So all we need to understand gradient descent is its NTK

Solves age-old question of why NNs can be trained to do so well even
though landscape is non-convex

28

“Results” 0

. . il n=500,t=0
¢ SOome toy experiments to give 040 = 500, t = 200
. o . n=10000,t=0
empirical evidence NTK 0.35 - | = 10000, t = 200

converges to its limiting kernel

0.30 -

as widthn — oo

0.25 A

» Plot: ®(x,, x) for fixed 020-

'x() — (190)' X = (COS(}/)a Sln(}/)) 0.15 -
to visualize values of kernel

0.10 A

0.05 -

29

Limitations

« No feature learning: in the NTK limit, layer features learned during
training essentially same as that from random initialization, aka “lazy
training”

- But we know empirically (i.e Imagenet, BERT) that feature learning is
important in DL

NTK Width 64 Width « (Feature Learning)

type
e state
city

Figure 1: PCA of Word2Vec embeddings of top US cities and states, for NTK, width-64, and width-oo
feature learning networks (Definition 5.1). NTK embeddings are essentially random, while cities and

states get naturally separated in embedding space as width increases in the feature learning regime.
30

Extending NTK

Subsequent flurry of work to try to extend NTK to other architectures:
[Arora, Du et al. "19] CNNs (CNTK)

[Du, Hou et al. 19] Graph Neural Tangent Kernel

[Alemohammad, Wang et al. 20] RNNs: Recurrent NTK

[Hron, Bahri et al. '20] Attention: Infinite Attention

31

Part 3: Tensor Programs

Tensor Programs

- To derive a unified Theory of Everything for deep
learning

The Tensor Programs Series

The theory of Tensor Programs is developed (and continues to be developed) over a series of papers.

» Scaling Limits of Wide Neural Networks

» TP1: Wide Neural Networks of Any Architecture are Gaussian Processes

» TP2: Neural Tangent Kernel for Any Architecture

» TP2b: Architectural Universality of Neural Tangent Kernel Training Dynamics
» TP3: Neural Matrix Laws

» TP4: Feature Learning in Infinite-Width Neural Networks

» TP4b: Adaptive Optimization in the Infinite-Width Limit

» A Spectral Condition for Feature Learning

» TP5: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
» TP6: Feature Learning in Infinite-Depth Neural Networks

Greg Yang, behind the Tensor
Programs series and currently
working on Grok

33

Tensor Programs

« Observation: (almost) all NNs
are defined in terms of:

« Matrix multiplication (MatMul)

- Taking a linear combination
(LinComb)

« Non-linearity (NonLin)

 For different architectures, we
just have to translate them to a
Tensor Program and
mechanically turn the crank to
track correlations btw vectors &
apply the Master Theorem

NETSOR program 1 MLP Computation on Network Input x

Input: W'z : G(n')
Input: b': G(nt)
Input: W2 : A(n?,nt)
Input: 5% : G(n?)
Input: v : G(n?)
1: ht:=Wlz + b : G(n')
2: z1 := ¢(ht) : H(n')
3: h?:= W2zl : G(n?)
4: h? := h2 + b2 : G(n?)
5: 22 := ¢(h?) : H(n?)
Output: v ' z2/vn2

> layer 1 embedding of input

> layer 1 bias

> layer 2 weights

> layer 2 bias

> readout layer weights

> layer 1 preactivation; LinComb
> layer 1 activation; Nonlin

> MatMul

> layer 2 preactivation; LinComb
> layer 2 activation; Nonlin

34

Tensor Programs

» Why does it work?

When width is large, every activation vec-
tor has roughly iid coordinates, at any time
during training. Using Tensor Programs,
we can recursively calculate such coordi-
nate distributions, and consequently un-
derstand how the neural network function
evolves.

35

Tensor Programs I:
Wide Feedforward or Recurrent Neural Networks of
Any Architecture are Gaussian Processes

Greg Yang*
Microsoft Research Al
gregyang@microsoft.com

) if g is input
u(g) =< > aiu(yt) ifg=>",a;y", introduced by LinComb ,
0 otherwise
(g, q") if g, ¢’ are inputs
> azE(y’ q’) if g = Y. a;y", introduced by LinComb
¥(g,9') = 2 i2(g, if ¢ = . a;y", introduced by LinComb

y')
ot]E z ¢(Z)q_ﬁ() if g = Wh, g’ = WH, introduced by MatMul w/ same A-var W
0 otherwise

Theorem 5.4 (NETSOR Master Theorem). ° Fix any NETSOR program satisfying Assumption 5.1
and with all nonlinearities controlled. If g*, ..., g™ are all of the G-vars in the entire program,
including all input G-vars, then for any controlled 1) : RM — R, as n — oo,

—nga, g ES B w(2)=_ B 9(Z7,...,29),

Z~N (p,%) Z~N(p,X2)

where == means almost sure convergence, Z = (Zgl, ey ZgM) e RM, and p = {u(g*)}M, €
RM and ¥ = {3(¢*, gj)}%-:l € RM*XM gre gigeéz in Eq. (2). See Fig. 1 for an illustration.

Tensor Programs I1:
Neural Tangent Kernel for Any Architecture

Greg Yang
Microsoft Research Al
gregyang@microsoft.com

Abstract

We prove that a randomly initialized neural network of any architecture has its
Tangent Kernel (NTK) converge to a deterministic limit, as the network widths
tend to infinity. We demonstrate how to calculate this limit. In prior literature, the
heuristic study of neural network gradients often assumes every weight matrix used
in forward propagation 1s independent from its transpose used in backpropagation
[58]. This is known as the gradient independence assumption (GIA). We i1dentify
a commonly satisfied condition, which we call Simple GIA Check, such that the
NTK limit calculation based on GIA is correct. Conversely, when Simple GIA
Check fails, we show GIA can result in wrong answers. Our material here presents
the NTK results of Yang [63] in a friendly manner and showcases the tensor
programs technique for understanding wide neural networks. We provide reference
implementations of infinite-width NTKSs of recurrent neural network, transformer,
and batch normalization at https://github.com/thegregyang/NTK4A.

37

Tensor Programs IV

« Common
parametrizations for
neural networks can be
defined in terms of:

» (a) Scalings of weights

 (b) Scaling initialization
variance

 (c) Scaling learning
rate

Feature Learning in Infinite-Width Neural Networks

Greg Yang Edward J. Hu"
Microsoft Research Al Microsoft Azure Al
gregyangOmicrosoft.com edwardhu@microsoft.com

abc-Parametrizations This paper studies a natural class of parametrizations, which we call the
abc-Parametrization and describe here. Consider an L-hidden-layer perceptron: For weight matrices

Wt e R**4and W2,..., WL € R**", and nonlinearity ¢ : R — R, such a neural network on
input £ € R% is given by h'(£) = W€ € R™, and
z'(€) = ¢(h'(€)) eR™, hFHE) =W'Ta!(€) eR", forl=1,...,L—1, (1)

and the network output (also called the logit(s)) is f(§) = WEtlzl(¢) for Wit € RIX™, An
abc-parametrization is specified by a set of numbers {a;, b;}; U {c} such that

(a) We parametrize each weight as W' = n=%w' for actual trainable parameter w*
(b) We initialize each w, s ~ N(0, n—2%), and

(c) The SGD learning rate is nn—¢ for some width-independent n.> *

38

Intuition

. Scaling weights g, vs initialization b, is symmetric: we can proportionately

increase one while decreasing the other to preserve the same functional
behavior

. lel/A/nW, W~ A4(0,]) functionally sameas W, W ~ 4(0,1/n)

. By controlling between a; and b, we can influence the per-layer learning

rate as the gradients for layer [get scaled by g,

39

Tensor Programs IV

Table 1: We summarize the abc values of SP (standard), NTP (Neural Tangent), MFP (Mean Field,
for 1-hidden-layer nets), uP (Maximal Update, ours). We show the minimal value of ¢ such that the
parametrization is stable (Definition H.4). We also list the quantities 7, 2ar,.1 +c,ar+1 +bro1 + 7
involved 1n stability, feature learning, and kernel regime properties of the parametrizations. Here we
. Stable: initial only focus on scaling with n and 1gnore dependence on input dimension. Recall the MLP definition:
—— h' =W e R z' = ¢(h') e R*, ATt = W'zl e R”, f(€) = WHH "
activations/

o, l _
oreactivations, Definition SP (w/ LR =) NTP MFP (L = 1) P (ours)
changes in _ _ ~1/2 =1
f ; h o Woen o {hase Gl {0 2sisE
eatures, changes 2 Lz = iy 1=L+1
logits are all O(1) l - 0 =1
~ o 1
| by wyg ~ N(0,n™*%) {1/2 1> 9 0 0 /2
- Feature learning: c LR =nn=¢ 1 0 ~1 0
it; 1 1
feature change r Definition 3.2 /2 /2 0 0
2a1,41 + C 1 1 1 1
has €2(1) ap41 +bry1+7 1 1 1 1
: Nontrivial? v v v v
coordinates Stable? v v v v
Feature Learning? v v
Kernel Regime? v v

Tensor Programs IV

- Note: they modified SP to have LR 1/n to avoid blowup, this forces it into uninteresting
kernel regime

Examples: The NTK parametrization (NTP) [26] has a; = 0 and a; = 1/2 for [> 2; b; = 0 for all
[; ¢ = 0. When depth L = 1, the Mean Field parametrization (MFP) [11, 30, 43, 45] has a; = 0,
as = 1; by = 0 for all [; c = —1. The standard parametrization (SP) available as the default setting in
PyTorch [39]° has a; = 0 for all [; by = 0 and b; = 1/2 for [> 2; ¢ = 0. However, we shall see that
c 1s too small (learning rate too large) in SP. We can define abc-parametrization and generalize our
results to arbitrary neural architectures (Appendix C), but we shall focus on MLPs in the main text.

41

Comparison for 3 layer NN

. Standard parametrization: « LP:
— 3T 2T 1T
o f(-x) — W ¢ (W ¢ (W X)) . f(x) — Lw3T¢ [W2T¢ (LwlTx)]
~ N (O,1), WZLW3~ H(0,1/n) ’ !

. WL w2 W3 ~ N (0,1/n)

« NTK Parametrization: iy’ g2

» Alluses LR =7

1 1
() — WﬁT “72T VVIT
° Ill;’ ||§, II; ~ '/V(Oal)

42

Tensor Programs IV

Maximal

Update Mean Field
. when depth=1 « Feature learning
Training blows up — Unstable * Function evolution cannot
» n or be described purely in the
Training stuck at It ———, 7yiyia] function space

~* Nonmaximal feature
learning limits differ from
uP's (maximal) limit only
In that some parameters
are stuck at init, ignoring
the learning rate

Kernel
Regime

Standdfd
LR = ©(1/width)

* Function evolution described

by functional equation for ‘
some kernel K " Standard Neural
foer — fr = —nKL(ft) LR = 0©(1) Tangerg

* No feature learning

43

Tensor Programs IV

- Their Maximal Update Parametrization (uP) allows for “maximal” updates

in the sense of ®(1) changes in each coordinate during training while
being stable

» This is unigue:

Optimality Properties One can formalize, in this general context, the notion of stability and the
notions of a parameter tensor being updated maximally and (a set of readout weights) being initialized
maximally. Then one can show that uP 1s the unique stable abc-parametrization such that all of its

parameter tensors are updated maximally and all of its readout weights are 1nitialized maximally.

» This gives rise to feature learning

44

« As predicted by theory,
optimal LR with yP doesn't
change much across width

 |In SP going wider can lead
to worse performance

Experiments

SP / xent UP / xent
2.0 width 2.0
256
N 1.5 512 1.5
9 1024
£ 1.0 2048 1.0
[= — 4096
(O
- — 8192
= 0.5 0.5
0.0 0.0
-14 -12 -10 -8 -6 -4 =2 -14 -12 -10 -8 -6 -
logoLearningRate logoLearningRate

Figure 3: MLP width different hidden sizes trained
for 20 epoch on CIFAR-10 using SGD. Left uses stan-
dard parametrization (SP); right uses maximal update
parametrization (uP). uP networks exhibit better learning
rate stability than their SP counterparts.

45

Tensor Programs IV

« Can NTK be “fixed” to have feature learning? No:

Any nontrivial stable abc-parametrization yields a (discrete-time) infinite-width limit.
This limit either 1) allows the embedding x* (£) to evolve nontrivially (Definition 3.5) or
2) is described by kernel gradient descent in function space (Definition 3.7), but not both.

¢ Proof: To derive the infinite-width limit of any neural computation (e.g. SGD training),
1) express it as a Tensor Program, and 2) mechanically apply the Master Theorem.

46

Zero-Shot Hyper-Parameter
Transfer

Tensor Programs V

- How to select hyper-parameters across different model sizes/
architectures?

3 Hyperparameters Don’t Transfer Conventionally

In the community there seem to be conflicting assumptions about HP stability. A priori, models
of different sizes don’t have any reason to share the optimal HPs. Indeed, papers aiming for state-
of-the-art results often tune them separately. On the other hand, a nontrivial fraction of papers in
deep learning fixes all HPs when comparing against baselines, which reflects an assumption that
the optimal HPs should be stable — not only among the same model of different sizes but also
among models of different designs — therefore, such comparisons are fair. Here, we demonstrate HP
instability across width explicitly in MLP and Transformers in the standard parametrization. We will
only look at training loss to exclude the effect of regularization.

48

Tensor Programs V

« With standard parametrization,
best LR at smaller width could
be terrible for larger widths

SP / xent
&0 width
256
N 1.5 512
< 1024
210 2048
[= —— 4096
0
© —— 8192
= 0.5
0.0
~-14 -12 -10 -8 -6

log,LearningRate

49

Tensor Programs V

Tensor Programs V:
Tuning Large Neural Networks via

Sign ificant m ajor practica | Zero-Shot Hyperparameter Transfer

application from this line of work

Greg Yang** Edward J. Hu* %" Igor Babuschkin® Szymon Sidor® Xiaodong Liu*

o Problem: hyper_ p arameter tun | ng David Farhi® Nick Rgﬁgcomsojf?lg;?p 1;?;111351(1 \3’;;2}211 Chen* Jianfeng Gao*
on large networks (i.e LLM
training runs) expensive

SSSSSS

Standard
Practice

« They show that we can tune
hyper-parameters on smaller
models, and transfer them to
larger models using uP

Dlrectly tune large model

/ 53
® =

Shrink Tune Transfer

\

Our Method

50

Tensor Programs V

Standard Practice Our Work

7.0
« Hyper-parameter \\\

6.5
0 6.0 ‘
of o O Width ‘

stability: tune once, J 55 Se

O |

€ 5.0 256 .
transfer across any < " ~

: : - =45
width (with theoretical — 102 YD
. . . . 4.0 ---
ustification — 4006 4 j
J) 35 —— 8192 optimum shifts optimum stable ==
« What can be 20 -18 -16 -14 -12 -10 20 -18 -16 -14 -12 —10
log,LearningRate log,LearningRate
transferred?
Optimizer Related Initialization Parameter Multipliers
learning rate (LR), momentum, per-layer multiplicative constants after
Adam beta, LR schedule, etc 1nit. variance weight/biases, etc

51

5.5

55 BatchSize 4.5 4.0
20
5.0 32 >0 40
64 '
4.5 3.5
m§4.5 128
N 3 —— 256 4.0 3.5
N o4.0
§g ——512 - 3.0
8% 35 : 30
|_
30 3.0
. 2.5
> ” v - Qf// \
2.0 2.0 >0 2.0 I
~14 -12 -10 -8 -5 0 5 10 15 -50 =25 0.0 25 (@) (b) (c) (d) (e) (f
B mpiricall k sea
eqLen
« But empirically works o
6.0 64 6.0 5.0
° * 128 45
for other dimensions 155 N\ — /) s
c — 512 4.5
f =50 5.0
o.£ 4.0
U
tOO . N 45 4.5 4.0
J =
4.0 4.0 -
3.5
3.5 3.5
¢ D e pt h 3.0 3.0 30 3.0 +—
~14 -12 -10 -8 -5 0 5 10 15 -5.0 -25 0.0 25 (@) (b) (c) (d) (e) ()
6.5 7.0
. Step 6.0
2032 6.5
« Batch size 3
—— 5912 6.0 '
g 22 — 7952 5.0
3 — 9992 5.5 5.0
S | th ge
« Sequence leng 3 . . .
« 4.5
[. 4.5
4, 4.0
° ° ° 4.0 4.0 \J \
« Tralning time
~14 -12 -10 -8 -5 0 5 10 15 -5.0 =25 0.0 25 (@ (b) (c) (d) (e) (f)
log,LearningRate [092Q0utput log,InitStd LR Schedule

Figure 19: Empirical validation of ;. Transfer across Batch Size, Sequence Length, and Training
Time on pre-LN Transformers. Same setting as Fig. 4. Despite some shift, the optimal HPs are

roughly stable when transferring from batch size 32, sequence length 128, and 5000 training steps.
52

« SP does not work:
some layer updates
too fast, others too

slow

« Problems that yP
was designed to
avoid

Tensor Programs V

logits attn logits
60
1.5 :
. 0
o
> 1 40
o Ll.O 5
wn 5 _3
T 20
tn 05 — 14
0.0 % 0
0.15 I1n 0125 | SN
= — 0.100
x 0.10
a | 0.075 ~rr
x
2 0.05 0.050 |
0.025
0.00 0.000
0 2000 4000 0 2000 4000
width width

0.0020

0.0015

0.0010

0.0005

0.0000

0.0015

0.0010

0.0005

0.0000

word embedding

_

N —

0 2000 4000
width

Figure 5: Logits and attention logits, but not word embeddings, of a Transformer blow up with
width in SP after 1 step of training. In contrast, all three are well-behaved with width in uP. Here
we measure how much different values change coordinatewise from initialization over 4 steps of
Adam updates, as a function of width. Specifically, we plot the standard deviation of the coordinates
of x; — xg, fort = 0,...,4, and z € {logits, attention logits, word embeddings}, where t = 0

indicates 1nitialization.

53

Summary

» NTK was close to answering many questions in DL theory

. |In the infinite-width limit, a network’s NTK converges to a deterministic kernel, and stays
constant throughout training

» Training described by kernel gradient descent
» Convergence, global optimality now very easy to show

- Tensor Programs developed to analyze limiting behavior of NNs, showed NNGP and NTK
behavior universal

. Fatal flaw: lack of feature learning, proven impossible to have together with kernel
dynamics

- P parametrization arose from TP analysis and supports feature learning while being stable

» This is also stable for transferring hyper-parameters across widths (and empirically other
dimensions)

54

