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The curse of dimensionality, and feature learning
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Neural networks overcome the curse 
of dimensionality via feature learning



Neural Feature Matrix
• Claim: the gram matrix  featurizes inputs


• SVD: 


• Extracts features with rotation/scaling: 


• Applies a rotation/reflection: 


• Learned features: 


• So feature learning is learning an inner product defined by M:



• We call  the Neural Feature Matrix

M := WT
i Wi

W = USVT

SVT

U

SVTx = (WTW)1/2x

⟨M1/2x, M1/2x⟩ = xTMz

M
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Average gradient outer product (AGOP)

• Jacobian : tells us the directions in input space that are most influential in 
computing our output


• For a predictor  on point , 


• (Uncentered) covariance matrix of sensitivity to input


• Why does this seem helpful?


• Features that are relevant should influence output


• So AGOP recovers the relevant features

∇f(xi)

f x AGOP( f, X) = ∑
i

∇f(xi)∇f(xi)T
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Deep Neural Feature Ansatz (NFA)

• For a deep nonlinear fully 
connected NN , denoting weights 
on layer  by  and inputs for layer 
 by , and the subnetwork that 

operates on  as 


• Then throughout training, for each 
layer , the Neural Feature Matrix 

 is proportional to Average 
Gradient Outer Product of  with 
respect to :

f
i Wi

i hi(x)
hi(x) fi

i
WT

i Wi
fi

hi(x)
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Empirical evidence for NFA
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2 layer NN


Red: first layer 
frozen


Green: all layers 
trained


Diagonal of first 
layer NFM 
visualized
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NFM and AGOP visually indistinguishable 



10

Lower corr for first layer due to input dim being smaller
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NFM: ~identity at 
initialization


Converges to AGOP after 
training (corr >.78)




Theoretical results for NFA
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Simple case

• Consider a NN where first layer is fully connected and are the only trainable 
weights


• Weight matrix 0 initialized


• One datapoint, multiple steps of GD


• MSE loss


• Let’s prove it!
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Other settings NFA is proven to hold
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First layer fully connected & trainable


Other layers either fixed or trainable


Initialization: for first layer weights


Gradient Independence Assumption: replace weights in backprop by weighs 
from the same distribution to simplify analysis



Deep Neural Feature Ansatz 
sheds light on notable 
phenomena from deep learning
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Spurious Features
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Spurious Features
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Neural networks often rely on features that are likely to co-
occur with the target feature but not part of it, i.e “spurious 

features”



Spurious Features
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Second row: amplified features (via gradient ascent), like 
asking for “more” of the label


Red: % change in classification accuracy if Gaussian noise 
added to spurious regions



Concatenated CIFAR10 and MNIST
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Trucks and planes with colored star
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CelebA lipstick classification
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Takeaway: NFA can be used to identify spurious features



Lottery Tickets
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Lottery Ticket Hypothesis

24

A randomly initialized neural network contains a sub-network that 
can match or outperform the trained network when trained in 

isolation



Lottery Ticket Hypothesis
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1. Use NFM to find 
top 2% of pixels

2. Re-initialize and retrain network on 
masked inputs (prune 98% of pixels)



Grokking
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Grokking
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No relation



Grokking
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Recursive Feature Machine 
(RFM)
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Kernel Machines Recap

• OLS regression: , want to minimize , 

solution: 


• But if datapoints are not linearly separable, we can use a feature map 

, new problem     “kernel trick”


• Some theory show for feature maps that can be expressed as a kernel 
 you can compute the optimal weights by only ever 

evaluating  and not 

f(x) = w⊤x
n

∑
i=1

(yi − w⊤xi)2 + λ∥w∥2
2

ŵ = (X⊤X + λI)−1X⊤y

ϕ : ℝd → ℝk
n

∑
i=1

(yi − ⟨w, ϕ(xi)⟩)2 + λ∥w∥2
2

K(x, x′￼) = ⟨ϕ(x), ϕ(x′￼)⟩
K ϕ
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Recursive Feature Machines

• If neural networks learn by implementing the AGOP, then we can “simulate” 
what it does even using non-feature learning methods like kernel machines


• Idea: alternate between solving kernel regression and updating the kernel 
(kind of like EM algorithm?)
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RFM
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Laplace kernel with 
Mahalanobis distance 

under :M

Solve for kernel regression coefficients 

Update feature matrix  with AGOPM



How does RFM do?

• Across 121 tabular datasets
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RFM without 
updating M = 
Laplace kernel

RFMs faster to train (40mins vs 5h for NNs)



RFM recovers similar features as NFM
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Top eigenvectors of first layer NFM in 2 layer 
NN vs RFM highly correlated

Simplicity 
bias

Spurious 
features



Steering LLMs
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1. Have dataset of prompt to binary 
concept labels (i.e whether 
prompt is harmful)


2. Take activations per layer

3. For each layer, train RFM from 

per-token activation to concept 
labels, learn feature matrix M


4. Take top eigenvector of M for 
each layer as “concept vector”


5. Use for classification/steering



Steering LLMs
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Other recent work
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NFA for CNNs
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Mechanism of feature learning in convolutional neural networks (Beaglehole et al, 2023)

https://arxiv.org/abs/2309.00570


RFMs grok
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Why does NFM and AGOP become aligned?
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Takeaways

• Simple appealing theory


• Verifying in which settings it holds for us?


• Curious why no results on attention blocks, FFNs in transformers


• Lots of implications for interpretability?
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Thank you!
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