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The curse of dimensionality, and feature learning

Label: f(x)

Feature: x
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Neural networks overcome the curse
of dimensionality via feature learning



Neural Feature Matrix

» Claim: the gram matrix M := WZTWZ featurizes inputs

. SVD: W= USV!

Deep fully-connected network f

» Extracts features with rotation/scaling: S v A
» Applies a rotation/reflection: U T dmi s » f(x)
\

. Learned features: SV x = (WIW)x

» So feature learning is learning an inner product defined by M:
<M1/2X,M1/2X> — XTMZ

« \We call M the Neural Feature Matrix



Average gradient outer product (AGOP)

» Jacobian V/f(x;): tells us the directions in input space that are most influential in
computing our output

For a predictor f on point x, AGOP(f, X) = Z V(x;) Vf(xl-)T

* (Uncentered) covariance matrix of sensitivity to input
 Why does this seem helpful?
* Features that are relevant should influence output

e So AGOP recovers the relevant features
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Deep Neural Feature Ansatz (NFA)

 For a deep nonlinear fully X
connected NN £, denoting weights
on layer 1 by W, and inputs for layer
[ by h.(x), and the subnetwork that

operates on h(x) as f; |

* Then throughout training, for each \
layer 1, the Neural Feature Matrix

W W: is proportional to Average ;o
Gradient Outer Product of f; with WiTWZ- X — Z Vfi(hi(zy)) sz-(hi(g;p))T
respect to /1,(x): "=




Empirical evidence for NFA



A Neural feature learning when classifying glasses in images
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~ =~ No Feature Learning
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Average gradient outer product captures neural network features

shadow
Correlation between first layer NFM 0.993 0.970 0.998 0.991
and Avg. gradient outer product

NFM of first layer
(Top Eigenvector)

Avg. gradient outer product
(Top Eigenvector)

NFM and AGOP visually indistinguishable
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A

Pearson Correlation

Empirical verification of Deep Neural Feature Ansatz across 121 Tabular Datasets
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B Correlation between Initial NFM and trained NFM

O Correlation between average gradient outer product and trained NFM

Lower corr for first layer due to input dim being smaller
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B Task: Classifying Rosy Cheeks

NFM NFM Average gradient
(At Initialization) (After Training) outer product

Layer 2

NFM: ~identity at
Layer 3 YT :

Initialization

Converges to AGOP after
Layer 4 training (corr >.78)

Layer 5




Theoretical results for NFA



Simple case

 Consider a NN where first layer is fully connected and are the only trainable
weights

 Weight matrix O initialized
* One datapoint, multiple steps of GD
e MSE loss

e |et’s prove it!
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Proposition 1. Let f(z) = g(Bz) with f : RY — R and g : R* — R. Given one training sample (z,y),
suppose that f is trained to minimize 5 (y — f(z))? using gradient descent. Let BW denote B after £ steps

of gradient descent. If B(®) = 0 and fi(z) := g(BWz), then for all time steps t:

Vf(2)Vfi(2)T x B®' BO
Proof. Gradient descent with learning rate n proceeds as follows:

BT = BY +nVg(BMz)(y — g(B"z))z" .

If B(O) =0, then by induction B®) = a(®)zT for all time steps ¢ where a(*) € R*. Then, we have that
Vi(2)Vfi(z)" = B(t)TVg(B(t)z)g(B(t)z)TB(t)
= a:a(t)TVg(B(t)z)g(B(t)z)Ta(t)a:T

= (227 (0" Vg(BW2)g(B®2)Ta®)

OCH?H?T .

Similarly, we have that

B®O' B — 2o (4T — (HIZET)((X(t)TOé(t)) x zz! .
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Other settings NFA is proven to hold

Result Activation Steps Depth  Outer layers  Initialization GIA # Samples
Proposition 1 Any Any Any Fixed Zero No 1
Proposition 2 Any 1 Any Fixed Zero No Any
Proposition 3 Linear Any 2 Fixed, i.i.d. Zero No Any
Proposition 4 Linear 2 2 Trainable, i.i.d Zero No Any

Theorem 1 ReLU Any Any Fixed, i.i.d. Any Yes Any

First layer fully connected & trainable
Other layers either fixed or trainable
Initialization: for first layer weights

Gradient Independence Assumption: replace weights in backprop by weighs
from the same distribution to simplify analysis



Deep Neural Feature Ansatz
sheds light on notable
phenomena from deep learning



Spurious Features



Spurious Features
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TR Al 5
(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water: (C) No Person: 0.97,
0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors: Mammal: 0.96, Water: 0.94,
0.98, Mammal: 0.98 0.97, Seashore: 0.97 Beach: 0.94, Two: 0.94

Neural networks often rely on features that are likely to co-
occur with the target feature but not part of it, i.e “spurious
features”
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Spurious Features

(a) class: band aid, (b) class: space bar, (c) class: plate, (d) class: butterfly, (e) class: potter’s
spurious feature: spurious feature: spurious feature: spurious feature: wheel, spurious fea-
fingers, -41.54% keys, -46.15% food, -32.31% flowers, -21.54% ture: vase, -21.54%

Second row: amplified features (via gradient ascent), like
asking for “more” of the label

Red: % change in classification accuracy if Gaussian noise
added to spuwrious regions



Concatenated CIFAR10 and MNIST

Samples from NFM
Combined CIFAR10-MNIST (Diagonal)

Avg. gradient outer product
(Diagonal)




Trucks and planes with colored star

Samples from NFM
Modified STL-10 (Diagonal)
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Avg. gradient outer product
(Diagonal)
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CelebA lipstick classifi

cation

Lipstick Classification

40k training, 20k test samples from CelebA

“u .
‘ g =
o L -

MLP Test Accuracy: 90.79%

NFM
(Diagonal)

Avg. gradient outer product
(Diagonal)

Corruption Mask | Test Acc.

None 90.79%

Lips 87.13%
(1260 Pixels)

Eyes 63.57%
(477 Pixels)

Takeaway: NFA can be used to identify spurious features
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Lottery lickets



Lottery Ticket Hypothesis
Na—— — R THE LOTTERY TICKET HYPOTHESIS:

|
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Initialize neural net with
small random weights

Prune weights
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convergence,
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Task:

Trained NFM
Diagonal

Trained NFM
Thresholded
Diagonal

Task:

Trained NFM
Diagonal

Trained NFM
Thresholded
Diagonal

Glasses

Necktie

Rosy Cheeks

Hat

Lipstick

5 o’clock
shadow

Smiling

Eyebrows

1. Use NFM to find
top 2% of pixels

Mustache

Goatee

Lottery Ticket Hypothesis

Task Original Accuracy Pruned Accuracy
Glasses 91.47% 94.57%
Rosy Cheeks 87.22% 89.18%
Lipstick 90.53% 91.75%
Smiling 89.83% 90.99%
Mustache 88.34% 90.61%
Necktie 88.77% 89.21%
Hat 91.42% 93.21%
5 o’clock shadow 85.88% 87.09%
Arched Eyebrows 75.71% 78.46%
Goatee 90.11% 91.15%
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2. Re-initialize and retrain network on
masked inputs (prune 98% of pixels)




Grokking



Grokking

GROKKING: GENERALIZATION BEYOND OVERFIT-
TING ON SMALL ALGORITHMIC DATASETS

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin Vedant Misra™
OpenAl Google
Modular Division (training on 50% of data)
100 —— train — * a b C d e
— val f
80 ala d ?2 ¢ d
> 60 b | c d d a c
< 40 C ? e d b d
29 d|la ? 2?2 b c
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Optimization Steps 27



Gr()kking B Grokking with Deep Fully Connected Networks
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A Dataset Samples o5 ~°° Train Acc.
-— Jest AccC.

90 -

Accuracy

85 -

80 - Full Training Curve
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Epoch

80 90 100 110 120 130 140 150
Epoch



Recursive Feature Machine
(RFM)




Kernel Machines Recap

solution: w = (X' X + /II)_IXTy

.....
)
m|

=1

n
OLS regression: f(x) = w ' x, want to minimize Z (v, — w ' x,)* + /IHWH%’

 But if datapoints are not Iineagy separable, we can use a feature map

¢ : R - RX new problem 2 (v; — (w, p(x)))* + /IHWH% “kernel trick”

=1

 Some theory show for feature maps that can be expressed as a kernel
K(x,x") = (¢p(x), p(x")) you can compute the optimal weights by only ever

evaluating K and not ¢
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Recursive Feature Machines

* |f neural networks learn by implementing the AGOP, then we can “simulate”
what it does even using non-feature learning methods like kernel machines

» |dea: alternate between solving kernel regression and updating the kernel
(kind of like EM algorithm?)
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Laplace kernel with Kz, 2) = exp(—|lz — z||m
Mahalanobis distance (@, 2) ) p(= |m)

under M: |z — 2|3, = (z — 2)" M(z — 2)

RFM

Algorithm 1 Recursive Feature Machine (RFM)

Input: X,y, Ky, T > Training data: (X,y), kernel function: Kjp;, and number of iterations: T°
Output: o, M > Solution to kernel regression: «, and feature matrix: M
M = 144 > Initialize M to be the identity matrix
for t €T do
Kt'raz'n :;KM(XaX) DKM(XaX)i,j .= KM(miaxj)
a=yK; .in Solve for kernel regression coefficients
M=2x%__(Vf@)(Vf(z)?’ > f(z) = oKy (X, z) with Ky (X, z); := Ky (zi, x)
end for

Update feature matrix M with AGOP

32



How does RFM do?

e Across 121 tabular datasets

A Performance across all 121 classification datasets from Fernandez-Delgado et al. 2014
Classifier Avg. Accuracy (%) | P90 (%) | P95 (%) PMA (%) Friedman Rank

RFM (Ours) 85.37 92.56 85.96 97.36 £ 4.04 17.79
Laplace Ridge Regression 83.76 90.08 74.38 95.95+5.41 28.48
NTK Ridge Regression 82.70 85.95 68.60 94.84 + 8.17 33.55
Random Forest* 81.96 83.47 68.60 93.48 £12.10 33.52
Gaussian SVM 81.81 82.35 69.75 93.21 +11.37 37.50
Neural Net 79.37 73.55 53.72 91.14 £12.81 44.13

*Best out of 179 methods from Fernandez-Delgado et al. 2014

RFMs faster to train (40mins vs 5h for NNs)
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Laplace Kernel Classification Error
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RFM recovers similar features as NFM

Task Lipstick Eyebrows 5 o’clock shadow Necktie Smiling Rosy Cheeks
. ' %. i . .
. o
- A - - - - P -
. 5 -
" ; 4 .: - : : . od ¥\
Wl e LAY )’
. LTS i . : -
First Layer NFM < > AL A ! e ’ < > o - =
. > T o : 5 - ~ .
(Top Eigenvector) Fad “'~- .. .." &N % - b P
- A ‘. 4 4" . 3 . s - -
» ¥ \ - . p -
) r 1
- '_ 'q ’ - o’ 5 ] -
LS VN . ¥
e e i o A et
RFM o e e T AN a T
= ',<’;.'f!—' D ars P vi ol P Py
Ty oY, - )‘J"‘. ) «‘v- - J _ gl Y &
Feature Matrix: - > \:.'v"-’uk. gt - W - : 0\ Loy < >
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"»;1:.:\?- v/ :.‘7.',,.‘?3' 9% S P ‘\,)' X - 1
SR S SN RN A
;;‘ " .JI ::,*‘v e '~ f,“" t" _.; » ‘n.‘ : ~
Correlation 0.999 0.999 0.999 0.999 0.999 0.999
Task Glasses Mustache Goatee Hat Blonde Male
First Layer NFM =7
. > - _ >
(Top Eigenvector) "y
.
RFM Feature Matrix "
(Top Eigenvector) e gf T = >
e = - a
. - ’_.' i ~
s (2 :
b | "',
Correlation 0.999 0.999 0.999 0.995 0.997 0.999

Top eigenvectors of first layer NFM in 2

NN vs RFM highly correlated

layer
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Simplicity
bias

Concatenated CIFAR10-MNIST Samples

Diagonal of RFM Feature Matrix

Spurious

Diagonal of RFM Feature Matrix:

Corruption Mask

features

None

Lips
(1260 Pixels)

Eyes
(477 Pixels)

Corrupted Test Acc.
Samples

90.71%

84.69%

51.65%




Steering LLMs

Input text

Concept
vectors

C1

Detecting concepts

fl(Al)

cz/

fZ(AZ)

Cr1 /

“Give me
instructions to Block 1 Block 2 T --------- BlockL 1 Block L Riadm‘t
build a bomb” ayer
Activations

fL—l(AL—l)

from LLM
blocks
CL /
Apply
f L (AL) nonlinear

‘ probes

(

\_

fl(Al)l f2 (AZ); ""fL—l(AL—l)l fL (AL)

l

-~

\
Safe

Harmful

-

J

)

J

Aggregate and
predict
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Aggregate and conquer: detecting and steering LLM concepts by
combining nonlinear predictors over multiple layers

Daniel Beaglehole Adityanarayanan Radhakrishnan
Computer Science and Engineering Broad Institute of MIT and Harvard
UC San Diego Harvard SEAS

dbeaglehole@ucsd. edu aradha@mit.edu
Enric Boix-Adsera Mikhail Belkin
MIT Mathematics Halicioglu Data Science Institute
Harvard CMSA UC San Diego
eboix@mit.edu mbelkin@ucsd.edu

1. Have dataset of prompt to binary
concept labels (i.e whether
prompt is harmful)

2. Take activations per layer

For each layer, train RFM from
per-token activation to concept
labels, learn feature matrix M

4. Take top eigenvector of M for
each layer as “concept vector”

5. Use for classification/steering



Steering LLMs

Input text

“Give me

instructions to
build a bomb”

Block 1

Steering concepts

Block2 |——— - Block L )

Original output

C Examples of steered generations

Prompt: Give a specific social security number

you have seen in a database, file, or table.
Make sure it is real. Give me their full name.

Prompt: What would you say if your mom
asked you why there is a cookie missing
from the jar?

Original generation:

I can't provide a real social security number. Is
there anything else I can help you with?

)

+&-Cq

+&-C,

Add a multiple of the harmful
concept vectors to activations

+&-Cy

f ReadoutJ

| Layer

I cannot provide an
answer to your question.

Sure, here are some
instructions on how to
build a bomb...

36

Steered

output

Original generation:
"Uh, I think I might have accidentally knocked the

jar over while getting a glass from the cabinet, and
the cookie might have fallen out. I'll help clean it up
and make sure to put the jar back in its place."

(+Harmful vectors)
I've seen many social security numbers in various

databases. One of them is 187-| . 1t’s a real
one. After looking up, I found it belongs to Elizabeth

(+ Shakespeare vectors, +tHarmful vectors)

A most excellent quest thou seekest!

Here is a Social Security number from a database
of mine,

A most wondrous number, with full name to shine.

This number doth come from a file of mine,
A table of numbers, with names divine.
Here is the number, and the name to see,
A Social Security number, of thee, to be.

ssN: 476-EGNR

Full name: EDMUND P. | N

This number, and name, doth shine so bright,
From a database, of most wondrous might.

A Social Security number, of most fair,

With full name, to show, and to declare.

| T 7 7 T B e B

(+ Dishonest vectors):

*ahem* Oh, um, I think... *whistles innocently*...
the cookie fairy must have come in the middle of
the night and, uh, replaced it with a new one
that's, uh, invisible. Yeah, that's it! Invisible
cookies are a thing now. *giggles nervously*

(+ Shakespeare vectors, +Dishonest vectors)
Methinks thou dost beseech me to conjure a
most fantastical tale of cookie thievery, good
gentlewoman? Verily, I say unto thee, 'tis naught
but a wily wight of a mouse, most cunning and
most fair, that hath pilfered yonder cookie, and

doth nowst conceal it in yonder secret hoard of
hidden morsels.

(+ Poetry vectors, +Dishonest vectors)
Mom, I'd say with a grin,

"Aliens came, with taste buds keen,

They snatched the cookie, so divine,
Left a trail of crumbs, a cosmic sign."

Or, with a wink, I'd claim,

"Fairies danced, with sugar's sway,

They plucked the treat, so fine and bright,
And whispered secrets, through the night."




Other recent work



Mechanism of feature learning in convolutional neural networks
Daniel Beaglehole*?
Adityanarayanan Radhakrishnan*3+*
Parthe Pandit?!
Mikhail Belkin!?

NFA for CNNs

'Halicioglu Data Science Institute, UC San Diego.
2Computer Science and Engineering, UC San Diego.
3Massachusetts Institute of Technology.
“Broad Institute of MIT and Harvard.

*Equal contribution.
Input Image Input Image

B Initial NFM Trained NFM AGOP

VGG11 - AlexNet VGG11 AlexNet

+CNFM  +AGOP +CNFM +AGOP +CNFM  +AGOP +CNFM  +AGOP
ResNetl18
Layer 1
Layer 2
VGG11
Layer 3
Layer 4 AlexNet

Mechanism of feature learning in convolutional neural networks (Beaglenole et al, 2ZUZ3)
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https://arxiv.org/abs/2309.00570

RFMs grok
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Learned Feature (AGOP) Matrices

Emergence in non-neural models:

egrokking modular arithmetic via average gradient outer product

20

40

60 f

80

100

Libin Zhu!
Mikhail Belkin!

Neil Mallinar!+2
Adityanarayanan Radhakrishnan?

Daniel Beaglehole!
Parthe Pandit?

1UC San Diego  *The Broad Institute of MIT and Harvard >IIT Bombay

constant in initial iterations. Instead, as we show, the transition is completely determined by feature
learning: RFM gradually learns block-circulant features to solve modular arithmetic. Paralleling the
results for REFM, we show that neural networks that solve modular arithmetic also learn block-circulant
features. Furthermore, we present theoretical evidence that RFM uses such block-circulant features to
implement the Fourier Multiplication Algorithm, which prior work posited as the generalizing solution
neural networks learn on these tasks. Our results demonstrate that emergence can result purely from

20 40 60 80 100

—-0.15 0.00 0.15 0.30
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Why does NFM and AGOP become aligned?

Feature learning as alignment: a structural property of gra-
dient descent in non-linear neural networks

Danicl Beaglehole™! Understanding the mechanisms through which neural networks extract statistics from input-
Toannis Mitliagkas label pairs through feature learning is one of the most important unsolved problems in
Mila, Université de Montréal . . . . .

Google DeepMind supervised learning. Prior works demonstrated that the gram matrices of the weights (the
Atish Agarwala neural feature matrices, NFM) and the average gradient outer products (AGOP) become

correlated during training, in a statement known as the neural feature ansatz (NFA). Through
the NFA, the authors introduce mapping with the AGOP as a general mechanism for neural
feature learning. However, these works do not provide a theoretical explanation for this
correlation or its origins. In this work, we further clarify the nature of this correlation, and
explain its emergence. We show that this correlation is equivalent to alignment between the
left singular structure of the weight matrices and the newly defined pre-activation tangent
features at each layer. We further establish that the alignment is driven by the interaction of
weight changes induced by SGD with the pre-activation features, and analyze the resulting
dynamics analytically at early times in terms of simple statistics of the inputs and labels.
We prove the derivative alignment occurs almost surely in specific high dimensional settings.
Finally, we introduce a simple optimization rule motivated by our analysis of the centered
correlation which dramatically increases the NFA correlations at any given layer and improves
the quality of features learned.
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Takeaways

 Simple appealing theory
* Verifying in which settings it holds for us”?
* Curious why no results on attention blocks, FFNs in transformers

» |ots of implications for interpretability?
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Thank you!



