
Advanced Retrieval Augmented
Generation Techniques

fzeng 2024-10-08

Outline
• Part 1: Retrieval techniques (today)

• RAG review

• Chunking

• Query optimization

• Synthetic data

• Hybrid search

• Part 2: Generation techniques

• Understanding long contexts

• Re-ranking

• Summarization

• Repacking

• Planning and multi-step retrieval

• Part 3: Productionizing RAG

• Evaluations

• Fine-tuning retrievers & embeddings

Naive RAG

Naive RAG
1. Clean knowledge base & break down

into smaller chunks of text

2. Use embedding model to turn chunks
of text into embeddings that has
semantic meaning in a vector space

3. Store embeddings in vector database
which supports nearest-neighbor
search

4. At runtime, query is embedded by
embedding model, & looks up similar
embeddings in vector database

Naive RAG
• 3 main steps: indexing, retrieval, generation

• “Retrieve-then-read” paradigm

• Combines parametric memory (i.e stored in weights) with
non-parametric memory

The paper that started it all

Naive RAG

• Many problems remain in practice…

• Not retrieving relevant/useful chunks

• Re-ranking retrieved chunks

• Hallucinations during generation

• Lack of confidence & trust in generated content

• This talk series will give you an arsenal of tools to tackle these, and give
you inspiration for unique approaches for your specific problem

Part 1: Retrieval

Chunking

Basic Chunking Strategies

• Fixed token without overlap 

• Fixed token with overlap 

• Recursive with overlap: split tokens by some set of characters (i.e newlines),
recursively merge text until chunk size limit

Figures from MongoDB

https://www.mongodb.com/developer/products/atlas/choosing-chunking-strategy-rag/

Chunking Granularity

• What retrieval granularity to use?

• Document

• Passage

• Sentence

• Proposition? 🤔

• Proposition: atomic expressions
encapsulating a distinct factoid, are
concise and self-contained

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2

Proposition-Level Chunks
Technique overview

• Generated proposition-level chunks from Wikipedia, FactoidWiki:

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2

Proposition-Level Chunks
Prompts for generation

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2

Proposition-Level Chunks
Results

• Recall@k metric: # of articles where correct answer is found within top k
retrieved passages

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2

AnalysisAnalysis

• Q1: passage/
sentence retrieved
Super Bowl X instead

• Q2: passage fails to
match part
containing atomic
number

• Q3: sentence was
truncated and
misses out function

• Q4: proposition
retrieved irrelevant

Takeaways

• ✅ Propositions contain higher density of question-related information,
outperforms passage/sentence based-retrieval

• ✅ Minimizes inclusion of extraneous, irrelevant information for
downstream tasks

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2

Semantic Chunking

• Break document into sentences

• For each sentence, create a sentence group comprising it and
sentences before/after it. Generate embeddings for each sentence group

• Adjacent sentence groups with small embedding distance means topic is
similar, whereas large distance implies topic has changed

• Use this to delineate chunks

n

5 Levels of Text Splitting, Greg Kamradt

https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb

Query Optimization

Query Rewriting

• 🙅 Retrieve-then-read

• 👌 Rewrite-retrieve-read

• IMO trainable rewriter
approach overcomplicated
and unnecessary

Query Rewriting for Retrieval-Augmented Large Language Models (Ma et al, 2023)

https://arxiv.org/abs/2305.14283v3

Query Rewriting

• They used search engine as
retriever, so makes sense to
rewrite query as search
engine queries

• Very simple prompts?!

Query Rewriting for Retrieval-Augmented Large Language Models (Ma et al, 2023)

https://arxiv.org/abs/2305.14283v3

Query Rewriting

• Results slightly better than with retrieve-then-
read, but already very strong parametric
performance

• Interesting: HotpotQA performed worse with
naive RAG than without, due to complex
multi-hop nature of questions that cause
direct retrieval to bring in noise instead of
useful context

Query Rewriting for Retrieval-Augmented Large Language Models (Ma et al, 2023)

https://arxiv.org/abs/2305.14283v3

Paper Limitations

• Results not very strong

• Also not really a universal result - specific to using search engine as RAG
source

• But does show that adapting your query to your data & retrieval medium
matters!

Query Rewriting for Retrieval-Augmented Large Language Models (Ma et al, 2023)

https://arxiv.org/abs/2305.14283v3

Hypothetical Document Embeddings

• Want to maximize similarity between query and relevant document

• What if you generated a hypothetical document that would answer the
query, and use that hypothetical document’s embedding for search?

Precise Zero-Shot Dense Retrieval without Relevance Labels (Gao et al, 2022)

https://arxiv.org/abs/2212.10496v1

Hypothetical Document Embeddings

• Pros

• Does not require training any retriever
models

• Data-free: requires no (query, relevant
document) labels

• Good as a starting point

• Cons

• As lifecycle of search system progresses and
there are more relevance judgements, will be
outperformed by supervised dense retriever

Precise Zero-Shot Dense Retrieval without Relevance Labels (Gao et al, 2022)

https://arxiv.org/abs/2212.10496v1

Query Rewriting - General Advice/Folklore Results

• Use conversation history for contextual queries (like you would in chat)

• Transform keyword search into meaningful queries

• Expand context-specific abbreviations

• Internal/uncommon terms may be tokenized & embedded poorly
without proper contextualization

Query Rewriting in RAG Applications (Shekhar Gulati, 2024)

https://shekhargulati.com/2024/07/17/query-rewriting-in-rag-applications/

Query Rewriting - General Advice/Folklore Results

• Enriching short queries with entity background

• Also helps with contextualizing

• Use mix of semantic search & structured filtering

• Later: multi-step retrieval methods that improves queries

Query Rewriting in RAG Applications (Shekhar Gulati, 2024)

https://shekhargulati.com/2024/07/17/query-rewriting-in-rag-applications/

Synthetic Data

Reverse HyDE

• Generate hypothetical
queries for documents
at indexing time

• Can use few-shot
prompting, and Guided
by Bad Questions (GBQ)
prompt

• Like a form of in-context
contrastive learning

RAG but you already have what it takes
• Generate your own context, and answer

query based off it

• Actually works for many general Q&A evals

• LLMs already have a lot of parametric
knowledge!

Generate rather than Retrieve: Large Language Models are Strong Context Generators (Yu et al, 2022)

https://arxiv.org/abs/2209.10063

Hybrid Search

Sparse Retrievers

• Embedding models are good at semantic search, but can miss exact
matches

• I.e query is “Error code TS-999”, highly likely that semantic search
returns error codes in general, but you really want the exact “TS-999”
error code

• This is where sparse retrieval using lexical representations comes in!

Introduction to Information Retrieval (Manning, Raghavan, Schütze, 2008)

https://nlp.stanford.edu/IR-book/

tf-idf
term frequency - inverse document frequency

•

• Helps determine how important the term is to the document

•

•

• Helps to attenuate terms that appear frequently but are not meaningful (i.e stop words)

•

• Best of both worlds

tft,d = relative frequency of t in d

dft = number of documents that contains t

idft = log
number of documents

dft

tf-idft,d = tft,d × idft

Introduction to Information Retrieval (Manning, Raghavan, Schütze, 2008)

https://nlp.stanford.edu/IR-book/

BM25

• 1990s, BM25 weighting scheme introduced, performed very well & still used as IR baseline

• Order-agnostic bag-of-words approach (i.e “Mary likes Jack” gives same ranking score for
a document as “Jack likes Mary”

• In its simplest form, it is just the sum of tf-idf for each keyword in the query:

• More complicated variants used in practice

• Various tuning parameters to scale document length, document term frequency, query
term frequency

• Can account for feedback from user (relevance judgement)

score(d) = ∑
t∈Q

tf-idft,d

Introduction to Information Retrieval (Manning, Raghavan, Schütze, 2008)

https://nlp.stanford.edu/IR-book/

Hybrid Retrieval

1. Chunk text

2. Create TF-IDF encodings
and embeddings for chunks

3. Use BM25 to find top chunks

4. Use embeddings to find top
chunks

5. Combine and deduplicate
results using rank fusion
techniques

6. Return top-k chunks
Introducing Contextual Retrieval (Anthropic)

https://www.anthropic.com/news/contextual-retrieval

Hybrid Retrieval - Results

Introducing Contextual Retrieval (Anthropic)

https://www.anthropic.com/news/contextual-retrieval

Part 2: Generation

Understanding Long Contexts

The (currently-unrealized) promise of long contexts

• “As context length we don’t need RAG anymore!” - mostly
unrealized thus far

• LLMs can only use context effectively within its training-time sequence
length

• Hard to come up with long-context tasks, very expensive to train

• Context length extrapolation usually done by modifying positional
encoding frequency & training on smaller set of data (i.e LongRoPE,
Llama 3.1)

→ ∞

Lost in the Middle: How
Language Models Use Long

Contexts

• Multi-document Q&A
task

• U-shaped
performance curve

Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3

Why the U-shaped curve?

• Primacy bias:

• Suspected to be due to instruction tuning (instructions usually appear
first), but found that pre-trained-only Transformers also exhibit this

• Recency bias:

• Positional encoding aims to capture relative offsets

• Next-token prediction doesn’t benefit much from modeling long-range
interactions

• Model cannot effectively use context in the middle!
Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3

Needle-in-a-
Haystack

• But with query-aware contextualization (placing query before & after context), near-
perfect retrieval across all settings for all models!

Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3

Query-aware Contextualization

• My hypothesis for why this works:

• With query at start & primacy bias, attention
mechanism gives a strong query-key dot product
value & weighs corresponding key highly

• Without query at start, the query at the end has
to “find” the key in the middle, but we already
saw this performs poorly, so dot-product is
probably weak & fails retrieval

• Sadly same trick does not work for multi-document
Q&A task

Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3

Some of you may recall this, does it feel less impressive now?

• Claude 2.1 200k eval: Nov 2023

• Claude 3 opus: Mar 2024

Lost-in-the-Middle Takeaways

• Query-aware contextualization is your friend! If context is long, duplicate
query at start and end

• Most important context should be at the start & end

• Motivates LostInTheMiddleRanker: if top 10 relevant documents labelled 1
through 10, order them [1 3 5 7 9 10 8 6 4 2]

•

Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3

Models at Long Context

Long Context RAG Performance of LLMs (Databricks, 2024)

https://www.databricks.com/blog/long-context-rag-performance-llms

Models at Long Context

• Sonnet exhibits increasingly high rates of refusals at longer context
lengths, likely due to lack of long-context training

• Motivates notion of effective context length (see RULER: What's the Real
Context Size of Your Long-Context Language Models?)

• Recommendation: OpenAI/Llama models for long context RAG

Long Context RAG Performance of LLMs (Databricks, 2024)

https://arxiv.org/abs/2404.06654#:~:text=RULER%3A%20What's%20the%20Real%20Context%20Size%20of%20Your%20Long-Context%20Language%20Models%3F%0A%20
https://arxiv.org/abs/2404.06654#:~:text=RULER%3A%20What's%20the%20Real%20Context%20Size%20of%20Your%20Long-Context%20Language%20Models%3F%0A%20
https://arxiv.org/abs/2404.06654#:~:text=RULER%3A%20What's%20the%20Real%20Context%20Size%20of%20Your%20Long-Context%20Language%20Models%3F%0A%20
https://www.databricks.com/blog/long-context-rag-performance-llms

Re-ranking

Re-ranking

• Problem: too much context, what to
keep?

• Naive approach: take top-k by
embedding similarity

• What are some problems with this?

A Tale of Two Ranking Schemes

• Bi-encoder:

• ❌ Output vector highly compressed representation

• ❌ No attention between document/query

• ❌ No contextualization opportunity

• ❌ Have to use same encoder even for different input types

• ✅ Cheaper & faster

• Cross-encoder:

• ✅ Attention mechanism between document/query

• ✅ Query and document can contextualize with
each other

• ✅ Often trained on query/document format

• ❌ Slower & more expensive

Anthropic thinks it helps

Re-ranking

• Best of both worlds: use bi-encoder to retrieve large numbers of relevant
documents, then use cross-encoder to rank

• Commercial options: Cohere Rerank, Voyage Reranker

• Open-source options: see https://sbert.net/docs/cross_encoder/
pretrained_models.html

• Most popular ones trained on MS MARCO dataset

https://cohere.com/rerank
https://docs.voyageai.com/docs/reranker
https://sbert.net/docs/cross_encoder/pretrained_models.html
https://sbert.net/docs/cross_encoder/pretrained_models.html

Re-rankers: Other Techniques

• Rich person’s reranker: ask LLM to assign score based on set of criteria

• Use LLMs as a query likelihood model: compute perplexity of generating
query given the document (Zhuang et al, 2023)

• Requires access to decoding logprobs

• Filtering: use small model to filter out documents with poor relevance to
avoid distracting context

https://arxiv.org/pdf/2310.13243v1

Repacking

• Given chunk ranking, what’s the optimal way of repacking the chunks in
context?

• Sides refers to Lost-in-the-Middle ordering

• Results on Llama2-7B-chat: reverse was best (recency bias?)

Searching for Best Practices in Retrieval-Augmented Generation (Wang et al, 2024)

https://arxiv.org/abs/2407.01219

Part 3: Multi-Step Retrieval

Iterative Retrieval

• Why stop at one round of retrieval?

• First round of retrieval can show reveal other informational gaps needed
to fulfill the task, which can be used to guide another round of retrieval

• And so on….

Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy (Shao et al, 2023)

https://arxiv.org/abs/2305.15294v2

Iterative Retrieval
Example

Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy (Shao et al, 2023)

https://arxiv.org/abs/2305.15294v2

Iterative Retrieval
Algorithm

1. Start with user question

2. Query initial paragraphs

3. Get answer generation

4. Query new context given query and first generation,

5. Get answer generation

6. ...and so on, until we have all iterations.

7. Return as the final response

q

Dq

y1

Dy1∥∥q

y2

T

yT
Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy (Shao et al, 2023)

https://arxiv.org/abs/2305.15294v2

Iterative Retrieval
• Second round of iteration generally helped the most

• Could probably get even better results with more targeted context retrieval than naive
query + previous generation concatenation

Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy (Shao et al, 2023)

https://arxiv.org/abs/2305.15294v2

CoT-Guided Retrieval

• Idea: use CoT to guide retrieval, and use retrieved contents to guide CoT

• Approach:

• Generate one sentence of CoT

• Use CoT sentence to retrieve additional piece of context

• Using new context, repeat the previous steps until answer is provided, or reached max
number of steps

Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions (Trivedi et al, 2022)

https://arxiv.org/abs/2212.10509v2

CoT-Guided Retrieval

• Prompt format: 

• Context ordered randomly

• LLM may output multiple sentences; just take first new sentence & drop the rest

• Seeded with 20 CoT in-context examples (probably unnecessary now)

Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions (Trivedi et al, 2022)

https://arxiv.org/abs/2212.10509v2

CoT-Guided Retrieval

• Outperforms single-turn retrieval using just the query

Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions (Trivedi et al, 2022)

https://arxiv.org/abs/2212.10509v2

Tree of Thought (ToT)

• The other most influential
reasoning approach apart from
CoT

• At each state (i.e current CoT
trace), generate multiple possible
new thoughts from each state

• Use LLM-based state evaluator to
assign value to each state

• Use BFS/DFS to search through
states

Tree of Thoughts: Deliberate Problem Solving with Large Language Models (Yao et al, 2023)

https://arxiv.org/abs/2305.10601

Part 4: Evaluation

Evaluation

Evals: Generation

Faithfulness

• Checks for hallucinations

• First split answer into
statements

• Then for each statement
check if supported by context

• F =
supported statements

all statements

RAGAS: Automated Evaluation of Retrieval Augmented Generation (Es et al, 2023)

https://arxiv.org/abs/2309.15217

Answer Relevance

• Assesses if answer actually
addresses the question

• Ignores factuality of answer

• Generate n plausible questions

• AR score is average cosine
similarity of embeddings:

• AR =
1
n

n

∑
i=1

sim (q, qi)
RAGAS: Automated Evaluation of Retrieval Augmented Generation (Es et al, 2023)

https://arxiv.org/abs/2309.15217

Context Relevance

• Measures how much of retrieved
context is actually relevant to
question

• Penalizes redundant/unnecessary
context

• CR =
 number of extracted sentences

 total number of sentences in c(q)

RAGAS: Automated Evaluation of Retrieval Augmented Generation (Es et al, 2023)

https://arxiv.org/abs/2309.15217

FEQA (Fact Extraction and Question Answering)

• Another metric to measure faithfulness in generation

• 1. Generate synthetic questions from the output

• 2. Check if answers for synthetic question using LLM output vs source as
context are the same

FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization (Durmus et al, 2020)

https://arxiv.org/abs/2005.03754

Other Techniques

• Use embedding similarity between generation/gold standard answer
(SemScore)

• Specify rubric & have LLM use a “form-filling paradigm” to provide
judgement (G-Eval)

https://arxiv.org/abs/2401.17072
https://arxiv.org/abs/2303.16634

Evals: Retrieval

Order-Unaware Retrieval Metrics
Precision@k

• # of items in the top-k results that are relevant

•

• Important when false positives are costly: fraud detection, spam
detection

Precision@k =
true positives @ k

(true positives@k) + (false positives@k)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation

Order-Unaware Retrieval Metrics
Recall@k

• # of actual relevant results retrieved out of all actual relevant results for
query

•

• Important when false negatives are costly: cancer screening, criminal
surveillance

Recall@k =
true positives@k

(true positives@k) + (false negatives@k)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation

Order-Unaware Retrieval Metrics
F1@k

• Single statistic to capture both precision and recall by taking harmonic
mean

•

• Precision & recall generally have an inverse relationship

F1@k =
2 * (Precision@k) * (Recall@k)

(Precision@k) + (Recall@k)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation

Order-Aware Retrieval Metrics
Mean Reciprocal Rank (MRR)

• Want first relevant item in higher position (i.e search engine,
recommendation systems, Q&A systems)

• Doesn’t care about position of remaining results

• MRR =
1

|Q |

|Q|

∑
i=1

1
ranki

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation

Order-Aware Retrieval Metrics
Average Precision (AP)

• Evaluates whether all relevant items selected by the model is ranked
highly

•

• : precision@k

• : 1 when item at rank k is relevant, 0 otherwise

AP =
∑n

k=1 (P(k) * rel(k))

number of relevant items

P(k)

rel(k)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation

Order-Aware Retrieval Metrics
Mean Average Precision (MAP)

• Taking mean of average precision across multiple queries

•
MAP =

1
Q

Q

∑
q=1

AP(q)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation

Order-Aware Retrieval Metrics
Cumulative Gain (CG@k)

• Now suppose items also have some relevance scale

• CG@k =
k

∑
1

reli

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation

Order-Aware Retrieval Metrics
Discounted Cumulative Gain (DCG@k)

• Cumulative gain doesn’t take into account order of relevant items, i.e
CG@2 is same:

• DCG adds log-based penalty based on position

• DCG@k =
k

∑
i=1

reli
log2(i + 1)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation

Order-Aware Retrieval Metrics
Normalized Discounted Cumulative Gain (NDCG@k)

• One issue with DCG is that it scales with length and magnitude of relevance
score

• Hard to compare across queries

• IDCG: the “ideal” DCG if things were put in ideal order

• Normalizing between 0-1:

• The go-to metric in IR

NDCG@k =
DCG@k

IDCG@k

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation

