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Naive RAG



Naive RAG
1. Clean knowledge base & break down 

into smaller chunks of text 

2. Use embedding model to turn chunks 
of text into embeddings that has 
semantic meaning in a vector space 

3. Store embeddings in vector database 
which supports nearest-neighbor 
search 

4. At runtime, query is embedded by 
embedding model, & looks up similar 
embeddings in vector database



Naive RAG
• 3 main steps: indexing, retrieval, generation 

• “Retrieve-then-read” paradigm 

• Combines parametric memory (i.e stored in weights) with 
non-parametric memory

The paper that started it all



Naive RAG

• Many problems remain in practice… 

• Not retrieving relevant/useful chunks 

• Re-ranking retrieved chunks 

• Hallucinations during generation 

• Lack of confidence & trust in generated content 

• This talk series will give you an arsenal of tools to tackle these, and give 
you inspiration for unique approaches for your specific problem



Part 1: Retrieval



Chunking



Basic Chunking Strategies

• Fixed token without overlap 

 

• Fixed token with overlap 

 

• Recursive with overlap: split tokens by some set of characters (i.e newlines), 
recursively merge text until chunk size limit

Figures from MongoDB

https://www.mongodb.com/developer/products/atlas/choosing-chunking-strategy-rag/


Chunking Granularity

• What retrieval granularity to use? 

• Document  

• Passage 

• Sentence 

• Proposition? 🤔 

• Proposition: atomic expressions 
encapsulating a distinct factoid, are 
concise and self-contained

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2


Proposition-Level Chunks
Technique overview

• Generated proposition-level chunks from Wikipedia, FactoidWiki:

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2


Proposition-Level Chunks
Prompts for generation

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2


Proposition-Level Chunks
Results

• Recall@k metric: # of articles where correct answer is found within top k 
retrieved passages

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2


AnalysisAnalysis

• Q1: passage/
sentence retrieved 
Super Bowl X instead 

• Q2: passage fails to 
match part 
containing atomic 
number 

• Q3: sentence was 
truncated and 
misses out function 

• Q4: proposition 
retrieved irrelevant



Takeaways

• ✅ Propositions contain higher density of question-related information, 
outperforms  passage/sentence based-retrieval 

• ✅ Minimizes inclusion of extraneous, irrelevant information for 
downstream tasks

Dense X Retrieval: What Retrieval Granularity Should We Use? (Chen et al, 2023)

https://arxiv.org/abs/2312.06648v2


Semantic Chunking

• Break document into sentences 

• For each sentence, create a sentence group comprising it and  
sentences before/after it. Generate embeddings for each sentence group 

• Adjacent sentence groups with small embedding distance means topic is 
similar, whereas large distance implies topic has changed 

• Use this to delineate chunks

n

5 Levels of Text Splitting, Greg Kamradt

https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb


Query Optimization



Query Rewriting

• 🙅 Retrieve-then-read 

• 👌 Rewrite-retrieve-read 

• IMO trainable rewriter 
approach overcomplicated 
and unnecessary

Query Rewriting for Retrieval-Augmented Large Language Models (Ma et al, 2023)

https://arxiv.org/abs/2305.14283v3


Query Rewriting

• They used search engine as 
retriever, so makes sense to 
rewrite query as search 
engine queries 

• Very simple prompts?!

Query Rewriting for Retrieval-Augmented Large Language Models (Ma et al, 2023)

https://arxiv.org/abs/2305.14283v3


Query Rewriting

• Results slightly better than with retrieve-then-
read, but already very strong parametric 
performance 

• Interesting: HotpotQA performed worse with 
naive RAG than without, due to complex 
multi-hop nature of questions that cause 
direct retrieval to bring in noise instead of 
useful context

Query Rewriting for Retrieval-Augmented Large Language Models (Ma et al, 2023)

https://arxiv.org/abs/2305.14283v3


Paper Limitations

• Results not very strong 

• Also not really a universal result - specific to using search engine as RAG 
source 

• But does show that adapting your query to your data & retrieval medium 
matters!

Query Rewriting for Retrieval-Augmented Large Language Models (Ma et al, 2023)

https://arxiv.org/abs/2305.14283v3


Hypothetical Document Embeddings

• Want to maximize similarity between query and relevant document 

• What if you generated a hypothetical document that would answer the 
query, and use that hypothetical document’s embedding for search?

Precise Zero-Shot Dense Retrieval without Relevance Labels (Gao et al, 2022)

https://arxiv.org/abs/2212.10496v1


Hypothetical Document Embeddings

• Pros 

• Does not require training any retriever 
models 

• Data-free: requires no (query, relevant 
document) labels 

• Good as a starting point 

• Cons 

• As lifecycle of search system progresses and 
there are more relevance judgements, will be 
outperformed by supervised dense retriever

Precise Zero-Shot Dense Retrieval without Relevance Labels (Gao et al, 2022)

https://arxiv.org/abs/2212.10496v1


Query Rewriting - General Advice/Folklore Results

• Use conversation history for contextual queries (like you would in chat) 

• Transform keyword search into meaningful queries 

• Expand context-specific abbreviations 

• Internal/uncommon terms may be tokenized & embedded poorly 
without proper contextualization

Query Rewriting in RAG Applications (Shekhar Gulati, 2024)

https://shekhargulati.com/2024/07/17/query-rewriting-in-rag-applications/


Query Rewriting - General Advice/Folklore Results

• Enriching short queries with entity background 

• Also helps with contextualizing 

• Use mix of semantic search & structured filtering  

• Later: multi-step retrieval methods that improves queries

Query Rewriting in RAG Applications (Shekhar Gulati, 2024)

https://shekhargulati.com/2024/07/17/query-rewriting-in-rag-applications/


Synthetic Data



Reverse HyDE

• Generate hypothetical 
queries for documents 
at indexing time 

• Can use few-shot 
prompting, and Guided 
by Bad Questions (GBQ) 
prompt 

• Like a form of in-context 
contrastive learning 



RAG but you already have what it takes
• Generate your own context, and answer 

query based off it 

• Actually works for many general Q&A evals 

• LLMs already have a lot of parametric 
knowledge!

Generate rather than Retrieve: Large Language Models are Strong Context Generators (Yu et al, 2022)

https://arxiv.org/abs/2209.10063


Hybrid Search



Sparse Retrievers

• Embedding models are good at semantic search, but can miss exact 
matches 

• I.e query is “Error code TS-999”, highly likely that semantic search 
returns error codes in general, but you really want the exact “TS-999” 
error code 

• This is where sparse retrieval using lexical representations comes in!

Introduction to Information Retrieval (Manning, Raghavan, Schütze, 2008)

https://nlp.stanford.edu/IR-book/


tf-idf
term frequency - inverse document frequency

•  

• Helps determine how important the term is to the document 

•  

•  

• Helps to attenuate terms that appear frequently but are not meaningful (i.e stop words) 

•  

• Best of both worlds

tft,d = relative frequency of t in d

dft = number of documents that contains t

idft = log
number of documents

dft

tf-idft,d = tft,d × idft

Introduction to Information Retrieval (Manning, Raghavan, Schütze, 2008)

https://nlp.stanford.edu/IR-book/


BM25

• 1990s, BM25 weighting scheme introduced, performed very well & still used as IR baseline 

• Order-agnostic bag-of-words approach (i.e “Mary likes Jack” gives same ranking score for 
a document as “Jack likes Mary” 

• In its simplest form, it is just the sum of tf-idf for each keyword in the query: 
 

• More complicated variants used in practice 

• Various tuning parameters to scale document length, document term frequency, query 
term frequency 

• Can account for feedback from user (relevance judgement)

score(d) = ∑
t∈Q

tf-idft,d

Introduction to Information Retrieval (Manning, Raghavan, Schütze, 2008)

https://nlp.stanford.edu/IR-book/


Hybrid Retrieval

1. Chunk text 

2. Create TF-IDF encodings 
and embeddings for chunks 

3. Use BM25 to find top chunks 

4. Use embeddings to find top 
chunks 

5. Combine and deduplicate 
results using rank fusion 
techniques 

6. Return top-k chunks
Introducing Contextual Retrieval (Anthropic)

https://www.anthropic.com/news/contextual-retrieval


Hybrid Retrieval - Results

Introducing Contextual Retrieval (Anthropic)

https://www.anthropic.com/news/contextual-retrieval


Part 2: Generation



Understanding Long Contexts



The (currently-unrealized) promise of long contexts

• “As context length  we don’t need RAG anymore!” - mostly 
unrealized thus far 

• LLMs can only use context effectively within its training-time sequence 
length 

• Hard to come up with long-context tasks, very expensive to train 

• Context length extrapolation usually done by modifying positional 
encoding frequency & training on smaller set of data (i.e LongRoPE, 
Llama 3.1)

→ ∞



Lost in the Middle: How 
Language Models Use Long 

Contexts

• Multi-document Q&A 
task 

• U-shaped 
performance curve

Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3


Why the U-shaped curve?

• Primacy bias: 

• Suspected to be due to instruction tuning (instructions usually appear 
first), but found that pre-trained-only Transformers also exhibit this 

• Recency bias: 

• Positional encoding aims to capture relative offsets 

• Next-token prediction doesn’t benefit much from modeling long-range 
interactions 

• Model cannot effectively use context in the middle!
Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3


Needle-in-a-
Haystack

• But with query-aware contextualization (placing query before & after context), near-
perfect retrieval across all settings for all models!

Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3


Query-aware Contextualization

• My hypothesis for why this works: 

• With query at start & primacy bias, attention 
mechanism gives a strong query-key dot product 
value & weighs corresponding key highly 

• Without query at start, the query at the end has 
to “find” the key in the middle, but we already 
saw this performs poorly, so dot-product is 
probably weak & fails retrieval 

• Sadly same trick does not work for multi-document 
Q&A task

Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3


Some of you may recall this, does it feel less impressive now?

• Claude 2.1 200k eval: Nov 2023 

• Claude 3 opus: Mar 2024



Lost-in-the-Middle Takeaways

• Query-aware contextualization is your friend! If context is long, duplicate 
query at start and end 

• Most important context should be at the start & end 

• Motivates LostInTheMiddleRanker: if top 10 relevant documents labelled 1 
through 10, order them [1 3 5 7 9 10 8 6 4 2] 

•

Lost in the Middle: How Language Models Use Long Contexts (Liu et al, 2023)

https://arxiv.org/abs/2307.03172v3


Models at Long Context

Long Context RAG Performance of LLMs (Databricks, 2024)

https://www.databricks.com/blog/long-context-rag-performance-llms


Models at Long Context

• Sonnet exhibits increasingly high rates of refusals at longer context 
lengths, likely due to lack of long-context training 

• Motivates notion of effective context length (see RULER: What's the Real 
Context Size of Your Long-Context Language Models?) 

• Recommendation: OpenAI/Llama models for long context RAG

Long Context RAG Performance of LLMs (Databricks, 2024)

https://arxiv.org/abs/2404.06654#:~:text=RULER%3A%20What's%20the%20Real%20Context%20Size%20of%20Your%20Long-Context%20Language%20Models%3F%0A%20
https://arxiv.org/abs/2404.06654#:~:text=RULER%3A%20What's%20the%20Real%20Context%20Size%20of%20Your%20Long-Context%20Language%20Models%3F%0A%20
https://arxiv.org/abs/2404.06654#:~:text=RULER%3A%20What's%20the%20Real%20Context%20Size%20of%20Your%20Long-Context%20Language%20Models%3F%0A%20
https://www.databricks.com/blog/long-context-rag-performance-llms


Re-ranking



Re-ranking

• Problem: too much context, what to 
keep? 

• Naive approach: take top-k by 
embedding similarity 

• What are some problems with this?



A Tale of Two Ranking Schemes

• Bi-encoder: 

• ❌ Output vector highly compressed representation 

• ❌ No attention between document/query 

• ❌ No contextualization opportunity 

• ❌ Have to use same encoder even for different input types 

• ✅ Cheaper & faster

• Cross-encoder: 

• ✅ Attention mechanism between document/query 

• ✅ Query and document can contextualize with 
each other 

• ✅ Often trained on query/document format 

• ❌ Slower & more expensive



Anthropic thinks it helps



Re-ranking

• Best of both worlds: use bi-encoder to retrieve large numbers of relevant 
documents, then use cross-encoder to rank 

• Commercial options: Cohere Rerank, Voyage Reranker 

• Open-source options: see https://sbert.net/docs/cross_encoder/
pretrained_models.html 

• Most popular ones trained on MS MARCO dataset

https://cohere.com/rerank
https://docs.voyageai.com/docs/reranker
https://sbert.net/docs/cross_encoder/pretrained_models.html
https://sbert.net/docs/cross_encoder/pretrained_models.html


Re-rankers: Other Techniques

• Rich person’s reranker: ask LLM to assign score based on set of criteria 

• Use LLMs as a query likelihood model: compute perplexity of generating 
query given the document (Zhuang et al, 2023) 

• Requires access to decoding logprobs 

• Filtering: use small model to filter out documents with poor relevance to 
avoid distracting context

https://arxiv.org/pdf/2310.13243v1


Repacking

• Given chunk ranking, what’s the optimal way of repacking the chunks in 
context? 

• Sides refers to Lost-in-the-Middle ordering 

• Results on Llama2-7B-chat: reverse was best (recency bias?)

Searching for Best Practices in Retrieval-Augmented Generation (Wang et al, 2024)

https://arxiv.org/abs/2407.01219


Part 3: Multi-Step Retrieval



Iterative Retrieval

• Why stop at one round of retrieval? 

• First round of retrieval can show reveal other informational gaps needed 
to fulfill the task, which can be used to guide another round of retrieval 

• And so on…. 

Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy (Shao et al, 2023)

https://arxiv.org/abs/2305.15294v2


Iterative Retrieval
Example

Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy (Shao et al, 2023)

https://arxiv.org/abs/2305.15294v2


Iterative Retrieval
Algorithm

1. Start with user question  

2. Query initial paragraphs  

3. Get answer generation  

4. Query new context given query and first generation,  

5. Get answer generation  

6. ...and so on, until we have all  iterations.  

7. Return  as the final response

q

Dq

y1

Dy1∥∥q

y2

T

yT
Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy (Shao et al, 2023)

https://arxiv.org/abs/2305.15294v2


Iterative Retrieval
• Second round of iteration generally helped the most 

• Could probably get even better results with more targeted context retrieval than naive 
query + previous generation concatenation

Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy (Shao et al, 2023)

https://arxiv.org/abs/2305.15294v2


CoT-Guided Retrieval

• Idea: use CoT to guide retrieval, and use retrieved contents to guide CoT 

• Approach: 

• Generate one sentence of CoT 

• Use CoT sentence to retrieve additional piece of context 

• Using new context, repeat the previous steps until answer is provided, or reached max 
number of steps

Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions (Trivedi et al, 2022)

https://arxiv.org/abs/2212.10509v2


CoT-Guided Retrieval

• Prompt format: 

 

• Context ordered randomly 

• LLM may output multiple sentences; just take first new sentence & drop the rest 

• Seeded with 20 CoT in-context examples (probably unnecessary now)

Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions (Trivedi et al, 2022)

https://arxiv.org/abs/2212.10509v2


CoT-Guided Retrieval

• Outperforms single-turn retrieval using just the query

Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions (Trivedi et al, 2022)

https://arxiv.org/abs/2212.10509v2


Tree of Thought (ToT)

• The other most influential 
reasoning approach apart from 
CoT 

• At each state (i.e current CoT 
trace), generate multiple possible 
new thoughts from each state 

• Use LLM-based state evaluator to 
assign value to each state 

• Use BFS/DFS to search through 
states

Tree of Thoughts: Deliberate Problem Solving with Large Language Models (Yao et al, 2023)

https://arxiv.org/abs/2305.10601


Part 4: Evaluation



Evaluation



Evals: Generation



Faithfulness

• Checks for hallucinations 

• First split answer into 
statements 

• Then for each statement 
check if supported by context 

• F =
# supported statements

# all statements

RAGAS: Automated Evaluation of Retrieval Augmented Generation (Es et al, 2023)

https://arxiv.org/abs/2309.15217


Answer Relevance

• Assesses if answer actually 
addresses the question 

• Ignores factuality of answer 

• Generate n plausible questions 

• AR score is average cosine 
similarity of embeddings: 

• AR =
1
n

n

∑
i=1

sim (q, qi)
RAGAS: Automated Evaluation of Retrieval Augmented Generation (Es et al, 2023)

https://arxiv.org/abs/2309.15217


Context Relevance

• Measures how much of retrieved 
context is actually relevant to 
question 

• Penalizes redundant/unnecessary 
context 

• CR =
 number of extracted sentences 

 total number of sentences in c(q)

RAGAS: Automated Evaluation of Retrieval Augmented Generation (Es et al, 2023)

https://arxiv.org/abs/2309.15217


FEQA (Fact Extraction and Question Answering)

• Another metric to measure faithfulness in generation 

• 1. Generate synthetic questions from the output 

• 2. Check if answers for synthetic question using LLM output vs source as 
context are the same

FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization (Durmus et al, 2020)

https://arxiv.org/abs/2005.03754


Other Techniques

• Use embedding similarity between generation/gold standard answer 
(SemScore) 

• Specify rubric & have LLM use a “form-filling paradigm” to provide 
judgement (G-Eval)

https://arxiv.org/abs/2401.17072
https://arxiv.org/abs/2303.16634


Evals: Retrieval



Order-Unaware Retrieval Metrics
Precision@k

• # of items in the top-k results that are relevant 

•  

• Important when false positives are costly: fraud detection, spam 
detection

Precision@k =
true positives @ k

(true positives@k) + (false positives@k)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation


Order-Unaware Retrieval Metrics
Recall@k

• # of actual relevant results retrieved out of all actual relevant results for 
query 

•  

• Important when false negatives are costly: cancer screening, criminal 
surveillance

Recall@k =
true positives@k

(true positives@k) + (false negatives@k)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation


Order-Unaware Retrieval Metrics
F1@k

• Single statistic to capture both precision and recall by taking harmonic 
mean 

•  

• Precision & recall generally have an inverse relationship 

F1@k =
2 * (Precision@k) * (Recall@k)

(Precision@k) + (Recall@k)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation


Order-Aware Retrieval Metrics
Mean Reciprocal Rank (MRR)

• Want first relevant item in higher position (i.e search engine, 
recommendation systems, Q&A systems) 

• Doesn’t care about position of remaining results 

• MRR =
1

|Q |

|Q|

∑
i=1

1
ranki

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation


Order-Aware Retrieval Metrics
Average Precision (AP)

• Evaluates whether all relevant items selected by the model is ranked 
highly 

•  

• : precision@k 

• : 1 when item at rank k is relevant, 0 otherwise

AP =
∑n

k=1 (P(k) * rel(k))

number of relevant items

P(k)

rel(k)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation


Order-Aware Retrieval Metrics
Mean Average Precision (MAP)

• Taking mean of average precision across multiple queries 

•
MAP =

1
Q

Q

∑
q=1

AP(q)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation


Order-Aware Retrieval Metrics
Cumulative Gain (CG@k)

• Now suppose items also have some relevance scale 

• CG@k =
k

∑
1

reli

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation


Order-Aware Retrieval Metrics
Discounted Cumulative Gain (DCG@k)

• Cumulative gain doesn’t take into account order of relevant items, i.e 
CG@2 is same:  

• DCG adds log-based penalty based on position 

• DCG@k =
k

∑
i=1

reli
log2(i + 1)

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation


Order-Aware Retrieval Metrics
Normalized Discounted Cumulative Gain (NDCG@k)

• One issue with DCG is that it scales with length and magnitude of relevance 
score 

• Hard to compare across queries 

• IDCG: the “ideal” DCG if things were put in ideal order 

• Normalizing between 0-1:  

• The go-to metric in IR

NDCG@k =
DCG@k

IDCG@k

Illustrations from Evaluation Metrics For Information Retrieval (Amit Chaudhary)

https://amitness.com/posts/information-retrieval-evaluation



